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This article presents a model that identifies effects of blood pressure variability (BPV) as a possible mechanism by
which psychological/psychiatric factors and health behaviors confer increased risk of coronary artery disease (CAD)
and acute coronary syndromes. Recent research in vascular biology and dynamics of coronary artery blood flow
suggests that BPV may have pathogenic effects on the coronary endothelium, plaque formation, and plaque stability.
Thus, BPV may be a risk factor for cardiovascular disease independent of mean arterial pressure. The model
proposes that autonomic control of the heart exerts a buffering or inhibitory influence on oscillations in blood
pressure. Established psychological/behavioral risk factors for CAD, such as depression, hostility, and anxiety, as
well as physical deconditioning and aging, are associated with diminished autonomic control of the heart, which
may disinhibit pathogenic BPV. Together, these data suggest a coherent, testable psychophysiological model of
CAD. In this article, we review these data and make recommendations for research to examine the model. Key
words: coronary artery disease, psychological factors, blood pressure variability, heart rate variability.

BPV 5 blood pressure variability; CAD 5 coronary
artery disease; HR 5 heart rate; HP 5 heart period;
BP 5 blood pressure; HPV 5 heart period variability;
HF 5 high frequency; MI 5 myocardial infarction;
LF 5 low frequency; VLF 5 very low frequency;
MAP 5 mean arterial pressure; CVP 5 central venous
pressure; LVM 5 left ventricular mass; SBP 5 systolic
blood pressure; DBP 5 diastolic blood pressure;
PRA 5 plasma renin activity; DBPV 5 diastolic blood
pressure variability; SBPV 5 systolic blood pressure
variability; DBPV 5 change in BPV; ANS 5 autonomic
nervous system.

PSYCHOLOGICAL FACTORS AND HEART
DISEASE: AN OVERVIEW

The relationship of mental and emotional factors to
heart disease has been a subject of intellectual and
practical interest in medicine for hundreds of years.
Strong emotion in general, and fear, anger, and grief in
particular, have been associated with angina pectoris,
myocardial infarction, and sudden cardiac death. As
scientific study of these relationships has proceeded,
associations between emotional state and physical
health have drawn strong empirical support from epi-

demiological studies and, more recently, prospective
studies. However, the mechanisms by which psycho-
logical/behavioral factors contribute to the develop-
ment of cardiac disease have not been elucidated fully.
Over the last several years, we have drawn on studies
in autonomic nervous system physiology, pharmacol-
ogy, cardiology, and vascular biology to develop a
model that links mental and emotional factors to the
development and expression of coronary artery dis-
ease. Simply put, the model, depicted in Figure 1,
holds that psychological/behavioral factors have in
common the effect of reducing the capacity for cardiac
autonomic modulation, that this reduction in cardiac
autonomic control is, in turn, associated with an in-
crease in the BPV in response to challenge, that in-
creased BPV responses to challenge promote increased
BPV throughout the day, and that this increased BPV is
harmful to the coronary arteries, contributing to
plaque formation, plaque rupture, and acute coronary
events.

THE PATHOGENESIS OF CORONARY ARTERY
DISEASE AND ACUTE CORONARY
SYNDROMES

Atherosclerotic coronary heart disease is believed to
result from a series of dynamic processes affecting the
coronary artery endothelium. In the so-called re-
sponse-to-injury model (1–3), damage to the coronary
endothelium results in plaque formation, character-
ized by cellular proliferation, lipid and calcium depo-
sition, and macrophage in-migration. This atheroscle-
rotic plaque is covered by a fibrous cap. Damage to the
fibrous cap material exposes underlying plaque mate-
rial to the lumen of the coronary artery, stimulating
platelet aggregation and thrombus formation. Occlu-
sion of the coronary artery by thrombus precipitates
cardiac tissue hypoxia and the acute coronary syn-
dromes of unstable angina and myocardial infarction.
Both the initial endothelial damage and rupture of the
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fibrous cap may be precipitated by shearing forces
associated with blood flow changes in the coronary
artery and with toxic effects of circulating factors, in-
cluding catecholamines, serotonin, neuropeptides,
and corticosterone. The stiffness of the fibrous athero-
sclerotic cap is a function of the frequency of oscilla-
tory stressors (4).

CARDIAC AUTONOMIC CONTROL, CORONARY
ARTERY DISEASE, AND CARDIAC MORBIDITY
AND MORTALITY

Over the past 15 years, methods of quantifying cy-
clical oscillations in HR or HP and BP have yielded
indices of autonomic control of the cardiovascular sys-
tem. Fourier or autoregressive analysis of HPV parti-
tions total variability of HP into components that re-
flect different autonomic influences on HP and BP.
The “HF band” (; 0.25 Hz) of the heart period power
spectrum has been used to estimate cardiac vagal con-
trol (5). HPV in this band is linked to respiratory in-
fluences and has been referred to as “respiratory sinus
arrhythmia” (6). HP oscillations at lower frequencies
are less well understood. Most investigators believe
that they represent mixed sympathetic-parasympa-
thetic and thermoregulatory influences on HP (5, 7–9).
Some, however, hold that when power in the 0.04- to
0.15-Hz frequency band is normalized relative to total
power, it represents pure sympathetic tone to the heart
(10, 11).

Reduced HPV is associated with CAD. Severity of
coronary atherosclerosis correlates negatively with
HF-HPV (12–14). Kleiger et al. (15) found an inverse
association in patients after MI between a 24-hour SD

of RR intervals and subsequent mortality, even after
controlling for the presence of heart failure and ar-
rhythmias in the early post-MI period. Bigger et al. (16,
17) showed that HPV measured in the frequency do-
main was inversely related to mortality after MI. Re-
cently, two prospective studies have shown that low
HPV predicts cardiac mortality in a normal population
(18, 19). We know of no comprehensive theory that
accounts for the association between reduced HPV,
increased CAD, and mortality.

PSYCHOLOGICAL AND
PSYCHOPHYSIOLOGICAL FACTORS LINKED
TO THE DEVELOPMENT OF CAD

The contribution of psychological and psychophys-
iological characteristics to the development of CAD
has been the focus of decades of research. The Western
Collaborative Group Study (WCGS) (20) was the first of
several prospective studies to find a strong association
between a behavior pattern characterized by driven-
ness, impatience, hostility, and competitiveness (Type
A) and subsequent CAD. Since the WCGS, there have
been several positive and several negative studies (21).
Attempts to refine the concept of the Type A Behavior
Pattern (TABP) to improve prediction of risk and to
find the “toxic core” of Type A have focused especially
on the personality trait of hostility. In addition, evi-
dence suggests that anxiety and depression are associ-
ated with CAD.

Hostility

Reanalyses of data from several large studies origi-
nally designed to evaluate the impact of the TABP on
CAD have shown that hostility predicts the develop-
ment of CAD (21). Most recent studies confirm the
relationship between hostility and heart disease (22–
25), although at least one cross-sectional study did not
(26). Hostility also is associated with increased cardio-
vascular reactivity to psychological challenge (21, 27–
33), which may contribute to CAD as described below.

Depression

Many studies have shown that depression is a sig-
nificant risk factor for CAD, myocardial infarction, and
cardiac mortality (34–37). Patients who are depressed
after MI have significantly greater mortality compared
with patients without depression (38, 39). Negative
affect, measured at enrollment, predicted progression
of carotid atherosclerosis after a 3.3-year follow-up in
hypertensive men (40). In the Cardiac Arrhythmia Pi-
lot Study, depression predicted the development of

Fig. 1. A proposed psychophysiological model of coronary artery
disease and acute coronary syndromes.
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cardiac events in post-MI patients with significant
ventricular ectopy (41).

Anxiety

In a quantitative review, both depression and anxi-
ety were associated with CAD (28). The Epidemiologic
Catchment Area study has shown an association be-
tween panic disorder and cardiovascular events, even
after control for demographic differences (42). Anxiety
predicted the development of CAD in two long-term
prospective studies (43, 44). Anxiety early after myo-
cardial infarction is associated with increased risk of
ischemic events and arrhythmias (45). Mental stress
during daily life, including feelings of tension and
sadness, significantly increased the risk of myocardial
ischemia in the subsequent hour (46). Cognitive behav-
ioral stress management in patients with evidence of
transient myocardial ischemia, either during 24-hour
monitoring or in response to laboratory stressors, re-
duced the rate of clinical coronary events at 4-year
follow-up compared with exercise training or standard
care (47).

AUTONOMIC MECHANISMS LINKING
PSYCHOLOGICAL RISK FACTORS TO CAD

Hostility, depression, and anxiety each have been
shown to be associated with autonomic dysregulation.
We have shown that in normal subjects under age 40,
HF-HPV is inversely related to hostility, but only dur-
ing daytime hours (48). This is consistent with Smith’s
transactional hypothesis, which holds that hostile in-
dividuals interact with their environment in ways that
create interpersonal conflict, something that would
occur only during waking hours (27). In a small study
of adolescents, HF-HPV was marginally lower in ag-
gressive subjects than in normal controls or anxious
subjects (49). In a larger study of 7- to 11-year-old boys,
measures of psychopathology were inversely related to
HF-HPV (50). In normal subjects, hostility was associ-
ated with reduced vagal antagonism to b-adrenergic
effects (51) and diminished vagal reactivity to a vago-
mimetic stimulus (52). Carney and others have shown
that depression is associated with significantly re-
duced HPV (53–56). In addition, successful treatment
of depression resulted in increased HPV (57).

Anxiety, too, is associated with dysregulated car-
diac autonomic activity. Panic patients are character-
ized by low cardiac vagal modulation and sympathetic
dominance, and reflect this disordered cardiac auto-
nomic control in analyses of HPV (58–60). Phobic
anxiety also is associated with reduced HPV (61).

AUTONOMIC REGULATION AND BLOOD
PRESSURE VARIABILITY

Like heart period, blood pressure oscillates at high
(0.15–0.50 Hz, HF) and lower frequencies (0.02–0.15
Hz). Some authors conclude that high frequency BPV
is produced by high frequency HPV (62). Others con-
clude the opposite: that high frequency HPV is pro-
duced by respiratory-driven high frequency BPV
through the influences of the baroreflexes (63). Lower
frequency BP oscillations, however, appear to be me-
diated by vascular sympathetic activity. Unlike the
dually innervated sinus node, the blood vessels of the
heart receive only sympathetic fibers, and the slower
response characteristics of the sympathetic system
(SNS) (64, 65) are consistent with these low frequency
oscillations (5). Other evidence also suggests a rela-
tionship between lower frequency BPV and the SNS.
Power in the 0.04- to 0.15-Hz frequency band de-
creases during the night and increases in the early
morning (66), as does activity of the SNS. Infusions of
nitroglycerin resulting in hypotension produce reflex
increases in this band (67). Tilt, which activates the
SNS, also leads to an increase in this band (68).

Evidence of the involvement of the SNS in lower
frequency BPV also comes from animal studies. Abo-
lition of the baroreflex by denervation of the arterial
baroreceptors located in the aortic arch and carotid
sinuses (sinoaortic denervation (SAD)) repeatedly has
been shown to increase BPV, generally with little
change in MAP. In rats, SAD slightly increases MAP
and markedly increases BPV, measured as the SD of BP
values collected once/minute for 1 hour (69). These
increases in BPV are partially reduced by ganglionic
blockade and return to normal levels with ganglionic
blockade in combination with angiotensin-converting
enzyme inhibitors, suggesting the importance of the
SNS in the production of this variability. SAD also
increased overall MAP variability in rats, measured as
total spectral power, and power in the VLF band
(0.0195–0.25 Hz), whereas power in the LF band
(0.27–0.74 Hz) decreased (70). Ganglionic blockade by
chlorisondamine significantly decreased MAP vari-
ability in SAD rats but not in controls. These findings
suggest that the arterial baroreflex exerts a buffering
influence on spontaneous BPV and the effect of gan-
glionic blockade implicates the SNS in BPV.

Julien et al. (71) suggest that vasoconstrictor tone is
necessary for the expression of BPV, providing suffi-
cient background tone for transient vasodilatory influ-
ences to generate variability. Vasodepressor actions
seem to generate most of the variability (71). Specifi-
cally, variability appears to be due to short-lasting
depressor responses, usually induced by physical ac-
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tivity, and immediately followed by BP increases. That
is, high levels of BPV do not characterize the quiet
resting state but emerge from reactions to external and
internal events.

CARDIAC AUTONOMIC CONTROL AND BPV

Many studies have demonstrated the role of the
baroreflexes and sympathetic vasoconstrictor tone in
BPV. Modulation of SNS activity is too slow to alter
the cardiac arm of the baroreflex. However, several
groups have demonstrated cardiac modulation of BPV:
atropine, which dramatically reduces power in the
HF-HPV band, also increases BPV in rats (70, 71). In
humans, atropine increases total MAP variability (72).
Because there is virtually no parasympathetic regula-
tion of vascular activity, the BPV effect of parasympa-
thetic blockade must be mediated by changes in vagal
modulation of the heart, which, in turn, affects the
blood pressure control system. Recently, Veerman et
al. (73) concluded that “heart rate variations exert an
antioscillatory influence on the variability of blood
pressure” (p. 125) during challenge of exercise but not
at rest, consistent with the finding that increased BPV
characterizes responses to events, not the quiet resting
state (71). In humans, atropine led to slightly reduced
MAP variability when subjects were supine but sub-
stantially increased BPV when subjects were walking
(74). Thus, evidence strongly suggests that cardiac au-
tonomic activity buffers BPV responses to challenge.

Dramatic demonstration of this buffering effect dur-
ing challenge appears in two elegant studies in hu-
mans. Taylor and Eckberg (75) recently showed that
elimination of HPV by transesophageal pacing led to a
reduction in BPV in supine, resting subjects. However,
in the same subjects during the challenge of 40-degree
head-up tilt, BPV increased when HPV was reduced by
pacing. Triedman and Saul (76) manipulated BPV by
varying CVP by random fluctuation of lower-body neg-
ative pressure in the 0.067- to 1.0-Hz frequency range
while subjects breathed at a fixed frequency of 0.30 Hz.
After administration of atropine and propranolol, in-
duced fluctuations in CVP below 0.10 Hz led to sub-
stantial increases in BPV in the same frequency range,
compared with the effects of CVP fluctuations in intact
subjects. Pharmacological blockade without fluctua-
tions in CVP slightly reduced BPV compared with the
intact condition. In both conditions, HF oscillations in
CVP were filtered and did not appear in BP.

To summarize, evidence suggests that interruption
of the afferent limb of the baroreflex loop dramatically
increases total BPV. Disruption of the cardiac arm of
the baroreflex by atropine has the same effect. The
frequencies at which these BPV effects are seen vary,

dependent upon differences in species, signal process-
ing, and measures of variability. Nevertheless, the
weight of this evidence strongly suggests that an intact,
autonomically mediated, cardiac control system, in-
cluding the baroreflexes, acts to buffer fluctuations in
blood pressure, especially in response to challenge.

THE CLINICAL SIGNIFICANCE OF BLOOD
PRESSURE VARIABILITY

Several streams of evidence suggest that BPV is
associated with cardiovascular disease outcomes. Both
clinical studies and laboratory studies in vascular dy-
namics provide relevant data.

Clinical Studies

The strongest evidence comes from studies, mostly
cross-sectional, of patients with hypertension. Three
general classes of outcome variables have appeared in
these studies: 1) early indicators of heart disease, eg,
urinary albumin excretion, plasma renin activity, and
LVM; 2) target organ damage, eg, left ventricular hy-
pertrophy and retinopathy; and 3) cardiovascular mor-
bidity, eg, death, coronary artery bypass surgery, and
myocardial infarction.

Veerman et al. (77) have reported that in 33 un-
treated hypertensive patients, daytime diastolic blood
pressure variability, measured as SD of ambulatory
DBP measured every 15 minutes, was a significant
predictor of left ventricular mass index and that beat-
to-beat DBPV, measured as the SD of all beats during a
20-minute recording period, was a significant predic-
tor of urinary albumin excretion. Palatini et al. (78)
found that increased daytime systolic BPV, measured
as the SD of readings taken every 7.5 to 10 minutes
during daytime, was associated with more severe tar-
get organ damage, independent of mean daytime BP in
728 subjects whose blood pressure status ranged from
normotensive to severely hypertensive. Among 25 el-
derly male hypertensive subjects, left ventricular mass
was associated with increased 24-hour ambulatory SD
of SBP and DBP measured every 15 minutes during the
daytime and every 30 minutes at night (79). Daytime
SBPV, measured as the SD of SBP recorded every 15
minutes, predicted carotid atherosclerosis in both hy-
pertensive (N 5 208) and normotensive subjects (N 5
216), even after control of other risk factors (80).
Among 231 men over the age of 45 years, diastolic
BPV, measured as the SD of BP measured every 15
minutes during daytime, and the level of PRA are
closely related (81). PRA is associated with risk of
myocardial infarction (82, 83).

In addition to the above cross-sectional studies, sev-
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eral longitudinal studies exist. Frattola et al. (84) stud-
ied 73 hypertensive subjects with intraarterial ambu-
latory BP monitoring and 7 years later, evaluated LVM.
SD of mean blood pressure for all 30-minute epochs of
the 24-hour recording was the best predictor of LVM.
Blood pressure level was not a significant predictor.
Pickering and James (85) reported that among 729 pa-
tients with mild hypertension, observed for an average
of 5 years, daytime diastolic BPV (SD of all daytime
values of DBP), age, male gender, and serum choles-
terol were significant predictors of cardiovascular
morbidity (death, myocardial infarction, stroke, and
coronary artery bypass surgery or angioplasty). Day-
time SD of DBP was a better predictor than all others.
They conclude that these findings are consistent with
the failure of antihypertensive treatment to prevent MI
while succeeding in preventing stroke and with its
success in lowering BP but not BPV, as shown by
Mancia (86). Finally, in rats, increased SD of BP, pro-
duced by baroreceptor denervation and measured on a
beat-to-beat basis, was associated with greater athero-
sclerosis compared with rats with sham denervation
(87). As expected, the groups did not differ in mean
BP.

Some studies have failed to find a relationship be-
tween BPV and heart disease outcomes. Using 24-hour
SD as the measure of BPV, neither Rizzoni et al. (91
subjects, 68 of whom were hypertensive) (88) nor
Drayer et al. (N 5 12) (89) found a relationship be-
tween SD of SBP or DBP with LVM. However, neither
group reported relationships between daytime or
nighttime BPV and LVM. Rizzoni et al. (88) did find
that all measures of BPV were significantly related to
vascular resistance, an index of vascular structural
changes. In another study, however, BPV, measured as
24-hour, daytime only, and nighttime only SD, was not
related to left ventricular hypertrophy in 40 hyperten-
sive subjects (90). Finally, in a study of 124 hyperten-
sive patients, Sokolow et al. (91) found no relationship
between daytime BPV (SD of all pressures recorded at
30-minute intervals) and hypertensive complications.
However, due to equipment limitations at the time the
study was conducted, BP was not recorded automati-
cally but required the subjects to activate the device for
each recording. This makes the findings of this study
difficult to interpret, because the conditions under
which recordings were made may have been subject to
psychological and logistical factors that either inclined
or disinclined subjects to record their pressures pre-
cisely on schedule.

Comparison of these positive and negative studies
suggests some important differences. First, most of the
positive studies showed relationships between day-
time measures of BPV and outcomes, whereas two of

the negative studies reported only 24-hour BPV. Sec-
ond, in four of the positive studies, the numbers of
subjects were 231, 424, 728, and 729, whereas in only
one of the negative studies did the number exceed 100.
Finally, either because of restrictions in age range or
large sample size, most of the positive studies in-
cluded large numbers of subjects 45 years of age or
greater. In the negative studies, this was not the case.

Studies in Vascular Physiology

Recent evidence from studies in vascular biology
also may be consistent with a relationship between
CAD and BPV. In a model of the human carotid bifur-
cation, Ku et al. (92) demonstrated that oscillations of
wall shear were highly correlated with intimal thick-
ness. In the human aorta, oscillatory shear and intimal
thickness were highly correlated (93). Oscillatory
shear stress also is highly correlated with the focal
atheromas in the human left coronary artery (94). In
these studies, the oscillatory stress index expresses the
amount of shear stress oscillation the arterial wall ex-
periences. Although its relationship to BPV is un-
known, oscillations in BP are likely to produce oscil-
lations in flow and, correspondingly, shear stress.

OVERALL SYNTHESIS

Based on this evidence, we propose that attenuated
cardiac autonomic control, principally cardiac para-
sympathetic modulation, is a significant contributor to
CAD and acute coronary events. The effect of this
attenuation is the reduction of the capacity to buffer
fluctuations in blood pressure (BPV) in response to
challenge both in the laboratory and throughout the
day, which may confer risk of CAD independent of
MAP. This hypothesis is consistent with the fact that
subjects with psychiatric/psychological risk factors for
CAD also have diminished cardiac autonomic control,
with the recognized cardioprotective effect of aerobic
conditioning, and with the effect of aerobic condition-
ing on autonomic control of the heart.

TESTS OF THE MODEL

Each arm of the model lends itself to empirical
verification. The literature reviewed above indicates
that some of these relationships already have been
supported, eg, the relationship between psychological/
psychophysiological risk factors for CAD and auto-
nomic control of the heart. Cardiac denervation virtu-
ally eliminates HPV (95–97) and aerobic conditioning
increases HPV (98–101). Limited empirical support
exists linking BPV throughout the day and heart dis-
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ease outcomes. Below, we review data which address
the central relationship of the model: that autonomic
control of the heart buffers BPV responses to chal-
lenge.

BPV Responses to Psychological and Orthostatic
Challenge

We tested the hypothesis that lower frequency BPV
responses are buffered by cardiac autonomic control
by examining the BPV response to psychological and
orthostatic challenge in 23 normal subjects differing in
cardiac control due to differences in aerobic capacity
as measured by VO2max. In this cross-sectional study,
cardiac control, operationalized as HPV, and BPV were
measured noninvasively on a beat-to-beat basis during
a quiet baseline period and in response to mental
arithmetic, the Stroop color-word matching task, and
70-degree head-up tilt.

As expected, VO2max and HPV were positively cor-
related, ie, that subjects high in aerobic capacity had
greater cardiac autonomic control. For both the psy-
chological and tilt tasks, as predicted, there was a
significant negative correlation between changes in
BPV and baseline HPV. The effects were strongest for
DBPV. The correlations between DBPV to psychologi-
cal stress and DBPV to tilt generally were substantial
and significant (102, 103).

A baroreflex mechanism may account for the find-
ing of a stronger inverse relationship between baseline
HPV and DDBPV but not DSBPV (63). On any given
cardiac cycle, a higher systolic pressure will lead to a
correspondingly higher diastolic blood pressure. How-
ever, this higher SBP would lead to compensatory
lengthening of the current RR interval through the
baroreflexes. This prolonged RR interval extends the
diastolic runoff period, thereby decreasing the next
diastolic pressure. Thus, diastolic pressure oscilla-
tions are dampened by baroreflex activity. The extent
of this alteration in RR interval in part may be a func-
tion of prevailing levels of cardiac autonomic activity
as measured by HPV. Because the alteration of RR
interval takes place within a given cardiac cycle, only
the parasympathetic system is likely to be involved.
Thus, in subjects with greater levels of baseline HPV,
the diastolic buffering effect is greater than in subjects
with lower levels.

Cardiac Autonomic Control and BPV Throughout
the Working Day

Another approach to studying the relationship be-
tween cardiac autonomic control and BPV involves the
use of ambulatory blood pressure monitoring. We have

conducted a pilot study of the relationship between
resting HPV and BPV during a stressful working day
(104). Subjects were nine New York City Traffic En-
forcement Agents. Traffic Agents spend their work-
days traveling by foot throughout the streets issuing
summons for parking and other vehicular violations.
Correspondingly, they encounter frequent verbal ha-
rassment and even physical assault from the public
and report relatively high levels of burnout and stress
on the job (104).

HR and HPV (SD) were measured while subjects
rested quietly at the workplace before the beginning of
the workday. On another day, BP was recorded every
15 minutes throughout the working day with an Accu-
tracker ambulatory BP monitor and the SD of these
values was taken as the measure of BPV.

As predicted, BPV (SD of all workday measure-
ments) was inversely related to resting HPV (r 5 2.54,
p 5 .14, and r 5 2.77, p 5 .01, for SBP and DBP,
respectively). Data are depicted in Figure 2. These
results support the hypothesis that increased levels of
cardiac control are associated with diminished BPV
and extend results from our laboratory studies to the
more relevant everyday work environment.

Although the number of subjects was small, these
findings are consistent with the view that diminished
cardiac buffering of blood pressure oscillations during
the workday may be a mechanism by which psycho-
logical factors contribute to the development of CAD.
The stronger effect on DBPV is consistent with the
findings from our studies of the effect of aerobic con-
ditioning and BPV responses to psychological and or-
thostatic challenge.

CONCLUSIONS

The model we propose holds that psychological/
psychiatric/behavioral characteristics identified as
risk factors for CAD and acute coronary syndromes
have their effect through reduced autonomic control of
the heart which in turn disinhibits pathological BP

Fig. 2. Scatterplot of ambulatory systolic and diastolic blood pres-
sure variability and resting SD of HR.
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oscillations. To date, evidence supports 1) the link
between physical factors, eg, denervation, neuropathy,
and ANS control of the heart, 2) the relationship be-
tween indices of negative affect (depression, hostility,
and anxiety) and ANS control of the heart, and 3) the
direct relationship between physical conditioning and
cardiac autonomic control. Preliminary evidence sup-
ports the central feature of the model: that increased
cardiac autonomic control buffers BPV responses to
challenge. Preliminary evidence also supports the link
between increased BPV and heart disease outcomes.
The proposed inverse relationship between cardiac
autonomic control and BPV throughout the day is sup-
ported only in a small pilot study. Each of these find-
ings requires replication.

Measurement of BPV

Although BPV is central to the model described in
this paper, there are no standards for its measurement
and as the various studies cited indicate, it is con-
ceived of and measured in many different ways. Vari-
ability can be due to cyclical increases and decreases
in pressure at a fixed period. The diurnal BP rhythm,
which in normal subjects is characterized by reduc-
tions in BP at night, is an example of a cyclical oscil-
lation with a period of 24 hours.

Variability can be pseudoperiodic, with cycles cen-
tered around a specific frequency but varying to some
degree. Examples of this pseudoperiodicity include
spectrally defined variability in the low-, mid-, and
high-frequency bands reported by many studies cited
in this article. Variability in these frequency bands is
not perfectly periodic, inasmuch as each band con-
tains many individual frequencies. However, they are
usefully aggregated in bands of varying width, depend-
ing (usually) on their physiological significance. Fi-
nally, variability in BP can be irregular, the product of
pressor or depressor events which may be associated
with events ranging from emotional arousal to changes
in posture. In these cases, variability increases as the
number of BP-provoking events increases, regardless
of their periodicity.

Variability in the BP signal can be quantified in
many ways. The most straightforward metric is the SD
of values of a specified time interval. Because the
various sources of variability (periodic, pseudoperi-
odic, irregular) can be concurrent, the SD reflects the
total effects of all three. Even in the simple case of SD,
there are variants. For example, Frattola et al. (84)
measured the long- and short-term SD of their 24-hour
intraarterial BP recordings. The long-term measure
was defined as the SD of the 1⁄2 hour mean values of
BP. The short-term measure was the average SD for

each 1⁄2 hour of the 24-hour record. These measures
reflect dramatically different processes. For example,
the short-term SD would not reflect the circadian
rhythm of BP generally seen in normal subjects,
whereas the long-term SD would.

Variability can be quantified in the frequency do-
main by using spectral analysis. Following this ap-
proach, the constituent regularly occurring frequen-
cies in a series of blood pressure measurements can be
identified. Typically, this requires beat-to-beat record-
ing. In cardiovascular physiology, the frequencies usu-
ally studied are in the 0.003- to 1.0-Hz range, ie, they
have a period of 1 to 300 seconds.

The clinical data on BPV are based only on SD. As
the above discussion suggests, SD could be elevated
due to circadian changes, increases in specific BP fre-
quencies, or increased frequency of pressor and de-
pressor events throughout the day. Currently, there is
no information on these matters, nor is there informa-
tion on the relationship between SDBP throughout the
day and resting BPV measured in the frequency do-
main over short-term recordings.

One type of BP variability, the nocturnal reduction
in BP seen in normal subjects, has been shown to be
related to cardiovascular disease outcomes in some
studies (105). Specifically, among hypertensive pa-
tients, “nondippers,” ie, those whose pressure does
not fall at night, seem to be at greater risk than “dip-
pers.” However, at least one study failed to find this
relationship (106). We should note that other things
being equal, nondippers should have less BPV, mea-
sured as the 24-hour SD, than dippers and, therefore,
this is contradictory to the model we propose. How-
ever, Roman et al. (106) have shown that daytime SD of
DBP was greater in nondippers than in dippers. Pala-
tini et al. (78) report that increased daytime systolic
BPV, measured as SD, and reduced day-night differ-
ences in DBP, were associated with target organ dam-
age.

The model makes several assumptions which have
not been tested. Data on the clinical significance of
BPV come from studies in which BP is measured by
ambulatory monitoring, usually three to four times per
hour. BPV in the laboratory is measured on a short-
term, beat-to-beat basis and is analyzed either in the
time or frequency domain. The relationship between
short-term BPV in the laboratory and intermittently
measured BPV in the field has not been established.

Correspondingly, there is no human clinical infor-
mation linking disease outcomes and short-term spec-
trally defined BPV. In rats, however, short-term BPV
measured in the time domain was associated with the
development of coronary atherosclerosis (87). Finally,
the impact of HPV on BPV reactivity to laboratory
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stressors has been demonstrated only in a small num-
ber of subjects and only cross-sectionally (102, 103).

Causality

Much of the clinical literature is cross-sectional and
the limitations of cross-sectional studies are well-
known. Foremost among these short-comings is the
inability to draw causal inferences. Thus, a cross-sec-
tional association between BPV and heart disease is as
consistent with an effect of CAD on BPV as it is with an
effect of BPV on CAD. Some clinical studies, however,
prospectively examined the relationship between BPV
and outcomes (84, 85). Moreover, the one animal study
to examine this issue has shown that experimental
increases of BPV by baroreceptor denervation led to
greater atherosclerosis compared with rats with nor-
mal BPV (87). Thus, although the issue is not resolved,
our working hypothesis is that increased BPV is caus-
ally related to heart disease outcomes.

Although the model may be substantially correct, it
does not specify the extent to which coronary artery
disease outcomes are determined by psychological fac-
tors. Psychological factors may contribute to CAD out-
comes in ways other than those described by the
model. The effects of generally recognized coronary
risk factors, such as hypertension, hypercholesterol-
emia, diabetes, smoking, and the genetic risk implied
in a positive family history of coronary disease, pre-
sumably may be largely independent of the psycho-
physiological mechanisms proposed here. These fac-
tors together do not account perfectly for the observed
variance in coronary disease outcomes; however, our
model provides several specifically testable hypothe-
ses regarding mechanisms linking the brain and the
cardiovascular system, which may improve predictive
power and risk stratification.

Even if the model proves correct, its impact on
therapeutics is uncertain. Whether blood pressure
variability can be modified through “treatments” for
anxiety, depression, hostility, or “stress,” or through
aerobic conditioning programs, and whether such
treatments affect coronary disease outcomes, either
through effects on blood pressure variability or inde-
pendent of them, is unknown. It also is possible that
treatments aimed “downstream” on the physiological
pathway from the brain to the heart could reduce risk
in those with psychological factors leading to in-
creased blood pressure variability, without any effect
on the psychological factors.
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