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An advanced detrending method with application
to HRV analysis
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Abstract—An advanced, simple to use, detrending method
to be used before heart rate variability analysis (HRV) is
presented. The method is based on smoothness priors ap-
proach and operates like a time-varying FIR high pass filter.
The effect of the detrending on time and frequency domain
analysis of HRV is studied.
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nal detrending, spectral analysis.

I. Introduction

Heart rate variability (HRV) is a widely used quantita-
tive marker of autonomic nervous system activity. Various
time and frequency domain methods have been applied to
HRV analysis [1]. A traditional spectral method, power
spectral density (PSD) estimation, provides information
about power distribution as a function of frequency. Spec-
tral estimation inherently assumes that the signal is at least
weakly stationary. However real HRV is usually nonsta-
tionary. Nonstationarities like slow linear or more complex
trends in the HRV signal, can cause distortion to time and
frequency domain analysis. Origins for nonstationarities in
HRV are discussed e.g. in [2].

Two kinds of methods have been used to get around the
nonstationarity problem. Weber et al. [3] suggested that
HRV data should be systematically tested for nonstation-
arities and that only stationary segments should be ana-
lyzed. Representativeness of these segments in some cases,
in comparison with the whole HRV signal, was however
questioned in [4]. Other methods try to remove the slow
nonstationary trends from the HRV signal before analysis.
The detrending is usually based on first order [5], [6] or
higher order polynomial [7], [6] models.

In this paper we present an advanced detrending proce-
dure based on smoothness priors approach. The presented
method is simple to use, since the frequency response can
be adjusted adequately to different situations by a single
parameter. The properties of the method are tested by
applying it to real RR interval data and the effect of the
method on time and frequency domain analysis of HRV is
considered.

II. Methods

A. Data acquisition

ECG was recorded continuously (NeuroScanTM by Neu-
roSoft Inc.) during a passive event related potential
paradigm, where subject sat in a chair while auditory pitch
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stimuli were delivered to right ear. Sampling rate of the
ECG was 500 Hz. Discrete event series, Ri−Ri−1 intervals
as a function of Ri occurrence times, was constructed by
an adaptive QRS detector algorithm. The QRS detector
was based on the one presented in [8]. As a result of the
detection algorithm an unevenly sampled RR interval time
series was obtained. In order to recover an evenly sam-
pled signal from the irregularly sampled event series cubic
interpolation was applied.

B. Detrending with smoothness priors method

We denote the RR interval time series as

z = (R2 − R1,R3 − R2, . . . ,RN − RN−1)
T ∈ RN−1 (1)

where N is the number of R peaks detected. The RR series
can be considered to consist of two components

z = zstat + ztrend (2)

where zstat is the nearly stationary RR series of interest and
ztrend is the low frequency aperiodic trend component. The
trend component can be modeled with a linear observation
model as

ztrend = Hθ + v (3)

where H ∈ R(N−1)×M is the observation matrix, θ ∈ RM
are the regression parameters and v is the observation er-
ror. The task is then to estimate the parameters by some
fitting procedure so that the prediction ẑtrend = Hθ̂ can
be used as the estimate of the trend. The properties of
the estimate depend strongly on the properties of the basis
vectors (columns of the matrix H) in the fitting. Widely

used method for the solution of the estimate θ̂ is the least
squares method. We use however a more general approach
for the estimation of θ̂. We state the so called regularized
least squares solution

θ̂λ = arg min
θ

{
‖Hθ − z‖2 + λ2‖Dd(Hθ)‖2

}
(4)

where λ is the regularization parameter and Dd indicates
the discrete approximation of the d’th derivative operator.
This is clearly a modification of the ordinary least squares
solution to the direction in which the side norm ‖Dd(Hθ)‖
gets smaller. In this way we can implement prior informa-
tion about the predicted trend Hθ to the estimation. The
solution of equation (4) can be written in the form

θ̂λ =
(
HTH + λ2HTDT

dDdH
)−1

HT z (5)

ẑtrend = Hθ̂λ (6)

where ẑtrend is the estimated trend which we want to re-
move. A detailed derivation of the result can be found in
[10].

The selection of the observation matrix H can be imple-
mented according to some known properties of the data z.
For example a generic set of Gaussian shaped functions or
sigmoids can be used. However, we want to avoid the prob-
lems arising from the basis selection and in this paper we
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Fig. 1. a) Time-varying frequency response of L (N − 1 = 50 and λ = 10). Only the first half of the frequency response is presented, since
the other half is identical. b) Frequency responses, obtained from the middle row of L (cf. bold lines), for λ = 1, 2, 4, 10, 20, 50 and
300. The corresponding cut-off frequencies are 0.189, 0.132, 0.093, 0.059, 0.041, 0.025 and 0.011 times the sampling frequency.

use the trivial choice of identity matrix for the observation
matrix H = I ∈ R(N−1)×(N−1). The regularization part
of (4) can be understood to draw the solution towards the
null space of the regularization matrix Dd. The null space
of the second order difference matrix contains all first or-
der curves and thus D2 is a good choice for estimating the
aperiodic trend of RR series. The second order difference
matrix D2 ∈ R(N−3)×(N−1) is of the form

D2 =




1 −2 1 0 · · · 0

0 1 −2 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 1 −2 1




(7)

With these specific choices the method is called the smooth-
ness priors method [11] and the detrended nearly stationary
RR series can be written as

ẑstat = z −Hθ̂λ =
(
I − (I + λ2DT

2 D2)−1
)
z (8)

C. PSD estimation

Methods for PSD estimation can be classified as non-
parametric (e.g. methods based on FFT) and parametric
(methods based on e.g. autoregressive (AR) time series
modeling). In the latter approach the RR time series is
modeled as an AR(p) process

zt = −
p∑

j=1

ajzt−j + et, t = p+ 1, . . . , N − 1 (9)

where p is the model order, aj are the AR coefficients and
et is the noise term. A modified covariance method is used
to solve the AR model. The power spectrum estimate Pz
is then calculated as

Pz(ω) =
σ2

|1 +
∑p
j=1 aje

−iωj |2 (10)

where σ2 is the variance of the prediction error of the
model. [12]

III. Results

In order to demonstrate the properties of the proposed
detrending method, we first consider it’s frequency re-
sponse. Equation (8) can be written as ẑstat = Lz, where
L = I − (I + λ2DT

2 D2)−1 corresponds to a time-varying
FIR high pass filter. The frequency response of L for each
discrete time point, obtained as a Fourier transform of it’s
rows, is presented in Fig. 1 a). It can be seen that the filter
is mostly constant, but the beginning and end of the signal
are handled differently. The filtering effect is attenuated
for the first and last elements of z, and thus the distortion
of end points of data is avoided. The effect of the smooth-
ing parameter λ on the frequency response of the filter is
presented in Fig. 1 b). The cut-off frequency of the filter
decreases when λ is increased. Besides the λ parameter the
frequency response naturally depends on the sampling rate
of signal z.

The performance of the presented method on real RR in-
terval time series data is presented in Fig. 2, where it is ap-
plied to RR data of four different subjects. Each RR series
was first interpolated to obtain a regularly sampled series
with sampling rate of 4 Hz. The detrending was then per-
formed using a smoothing parameter λ = 300, which equals
a cut-off frequency of 0.043 Hz. The four RR series with
the fitted trends and the corresponding detrended series are
presented in Fig. 2 a). Three different time domain param-
eters, recommended in [1], were selected to demonstrate the
effect of the used detrending method on time domain anal-
ysis (Fig. 2 b)). These were the standard deviation of all
RR intervals (SDNN), the square root of the mean squared
differences of successive RR intervals (RMSSD) and the
relative amount of successive RR intervals differing more
than 50 ms (pNN50).

The effect of the presented detrending method on
the PSD estimates calculated with Welch’s periodogram
method and by AR modeling is presented in Fig. 2 c). AR
model order p = 16 was selected according to [1], by us-
ing the corrected Akaike information criteria [13]. In each
original PSD estimate the intensity of the very low fre-
quency (VLF) component is clearly stronger than the in-
tensity of low frequency (LF) or high frequency (HF) com-
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a) Original and detrended RR series
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b) Time domain analysis
SDNN RMSSD pNN50 SDNN RMSSD pNN50 SDNN RMSSD pNN50 SDNN RMSSD pNN50
(ms) (ms) (%) (ms) (ms) (%) (ms) (ms) (%) (ms) (ms) (%)

Original 63.62 72.40 53.00 60.96 37.34 16.80 53.01 62.72 53.95 52.93 37.48 17.29
Detrended 55.54 72.10 52.07 41.42 36.98 15.98 49.15 62.51 54.42 41.90 37.21 16.92

c) Frequency domain analysis
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Fig. 2. The effect of the detrending method on time and frequency domain analysis. a) Original RR series and fitted trends (above) and
detrended RR series (below) for four different data segments. The duration of each data segment is 200 seconds and they were obtained
from different subjects. b) The effect of the detrending procedure on three time domain parameters (SDNN, RMSSD and pNN50). c)
PSD estimates for original (thin line) and detrended (bold line) RR series with Welch’s periodogram method (above) and by using a
16’th order AR model (below).

ponent. Each spectrum is however limited to 0.035 s2/Hz
to enable the comparison of the spectrums before and after
detrending. For Welch’s method the VLF components are
properly removed while the higher frequencies are not sig-
nificantly altered by the detrending. But when AR models
of relatively low orders are used, which is usually desirable
in HRV analysis in order to enable a distinct division of
the spectrum into VLF, LF and HF components, the effect
of detrending is remarkable. In each original AR spectrum
the peak around 0.1 Hz is spuriously covered by the strong
VLF component. However in the AR spectrums obtained
after detrending the component near 0.1 Hz is more realis-
tic when compared to the spectrums obtained by Welch’s
method.

IV. Discussion

We have presented an advanced detrending method with
application to HRV analysis. The method is based on
smoothness priors formulation. The main advantage of the
method, compared to methods presented in [7], [5], is its
simplicity. The frequency response of the method is ad-
justed with a single parameter. This smoothing parame-
ter λ should be selected in such a way that the spectral
components of interest are not significantly affected by the
detrending. Another advantage of the presented method is
that the filtering effect is attenuated in the beginning and
the end of the data and thus the distortion of data end

points is avoided.

The effect of detrending on time and frequency domain
analysis of HRV was demonstrated. In time domain most
effect is focused on SDNN, which describes the amount
of overall variance of RR series. Instead only little effect
is focused on RMSSD and pNN50 which both describe the
differences in successive RR intervals. In frequency domain
the low frequency trend components increase the power of
VLF component. Thus, when using relatively low order
AR models in spectrum estimation detrending is especially
recommended, since the strong VLF component distorts
other components, especially the LF component, of the
spectrum.

The presented detrending method can be applied to e.g.
respiratory sinus arrhythmia (RSA) quantification. RSA
component is separated from other frequency components
of HRV by adjusting the smoothing parameter λ properly.
For other purposes of HRV analysis one should make sure
that the detrending does not lose any useful information
from the lower frequency components. Finally, it should
be emphasized that the presented detrending method is
not restricted to HRV analysis only, but can be applied as
well to other biomedical signals e.g. for detrending of EEG
signals in quantitative EEG analysis.



4

Appendix

All the computation of this paper are executed using
MATLABr 6 of The MathWorks Inc. The source code,
in all its simplicity, for applying the presented detrending
method to signal z is listed below.

T = length(z);

lambda = 10;

I = speye(T);

D2 = spdiags(ones(T-2,1)*[1 -2 1],[0:2],T-2,T);

z_stat = (I-inv(I+lambda^2*D2’*D2))*z;

For more information see
http://venda.uku.fi/research/biosignals

References

[1] Task force of the European society of cardiology and the North
American society of pacing and electrophysiology, “Heart rate
variability – standards of measurement, physiological interpre-
tation, and clinical use,” Circulation, vol. 93, pp. 1043–1065,
March 1996.

[2] G. Berntson, J. B. JR., D. Eckberg, P. Grossman, P. Kauf-
mann, M. Malik, H. Nagaraja, S. Porges, J. Saul, P. Stone, and
W. V. D. Molen, “Heart rate variability: Origins, methods, and
interpretive caveats,” Psychophysiol, vol. 34, pp. 623–648, 1997.

[3] E. Weber, C. Molenaar, and M. van der Molen, “A nonstationar-
ity test for the spectral analysis of physiological time series with
an application to respiratory sinus arrhythmia,” Psychophysiol,
vol. 29, pp. 55–65, January 1992.

[4] P. Grossman, “Breathing rhythms of the heart in a world of
no steady state: a comment on Weber, Molenaar, and van der
Molen,” Psychophysiol, vol. 29, pp. 66–72, January 1992.

[5] D. Litvack, T. Oberlander, L. Carney, and J. Saul, “Time and
frequency domain methods for heart rate variability analysis: a
methodological comparison,” Psychophysiol, vol. 32, pp. 492–
504, 1995.

[6] I. Mitov, “A method for assessment and processing of biomedical
signals containing trend and periodic components,” Med Eng
Phys, vol. 20, pp. 660–668, November-December 1998.

[7] S. Porges and R. Bohrer, “The analysis of periodic processes
in psychophysiological research,” in Principles of psychophysi-
ology: physical social and inferential elements (J. Cacioppo and
L. Tassinary, eds.), pp. 708–753, Cambridge University Press,
1990.

[8] J. Pan and W. Tompkins, “A real-time QRS detection algo-
rithm,” IEEE Trans Biomed Eng, vol. 32, pp. 230–236, March
1985.

[9] P. Grossman, J. van Beek, and C. Wientjes, “A comparison
of three quantification methods for estimation of respiratory si-
nus arrhythmia,” Psychophysiol, vol. 27, pp. 702–714, November
1990.

[10] P. Karjalainen, Regularization and Bayesian methods for
evoked potential esimation. PhD thesis, University of
Kuopio, Department of Applied Physics, 1997. URL:
http://venda.uku.fi/research/biosignal/publications/.

[11] W. Gersch, “Smoothness priors,” in New Directions in Time
Series Analysis, Part II, pp. 113–146, Springer-Verlag, 1991.

[12] S. Marple, Digital Spectral Analysis with Applications. Prentice-
Hall, 1987.

[13] F. Gustafsson and H. Hjalmarsson, “Twenty-one ML estimators
for model selection,” Automatica, vol. 31, pp. 1377–1392, 1995.


