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Communications______________________________________________________________________

Do Existing Measures of Poincaré Plot Geometry Reflect
Nonlinear Features of Heart Rate Variability?

M. Brennan, M. Palaniswami*, and P. Kamen

Abstract—Heart rate variability (HRV) is concerned with the analysis
of the intervals between heartbeats. An emerging analysis technique is the
Poincaré plot, which takes a sequence of intervals and plots each interval
against the following interval. The geometry of this plot has been shown to
distinguish between healthy and unhealthy subjects in clinical settings. The
Poincaré plot is a valuable HRV analysis technique due to its ability to dis-
play nonlinear aspects of the interval sequence. The problem is, how do we
quantitatively characterize the plot to capture useful summary descriptors
that are independent of existing HRV measures? Researchers have inves-
tigated a number of techniques: converting the two-dimensional plot into
various one-dimensional views; the fitting of an ellipse to the plot shape;
and measuring the correlation coefficient of the plot. We investigate each
of these methods in detail and show that they are all measuring linear as-
pects of the intervals which existing HRV indexes already specify. The fact
that these methods appear insensitive to the nonlinear characteristics of
the intervals is an important finding because the Poincaré plot is primarily
a nonlinear technique. Therefore, further work is needed to determine if
better methods of characterizing Poincaré plot geometry can be found.

Index Terms—Heart rate variability (HRV), nonlinear analysis, Poincaré
plot analysis.

I. INTRODUCTION

The field of heart rate variability (HRV) studies the fluctuations in
the intervals between heartbeats, known as RR intervals. The Poincaré
plot, a technique taken from nonlinear dynamics, portrays the nature of
these fluctuations. It is a graph of each RR interval plotted against the
next interval. Poincaré plot analysis is an emerging quantitative-visual
technique whereby the shape of the plot is categorized into functional
classes that indicate the degree of heart failure in a subject [1]. The
plot provides summary information as well as detailed beat-to-beat in-
formation on the behavior of the heart [2].

Support is increasing for nonlinear analysis techniques and quanti-
tative descriptors as it has become evident that the cardiac systems are
nonlinear in their function [3], [4]. The Poincaré plot is becoming a
popular technique due to its simple visual interpretation and its proven
clinical ability as a predictor of disease and cardiac dysfunction [5].
The problem regarding Poincaré plot use has been the lack of obvious
quantitative measures that characterize the salient features of the plot.
Researchers have put forward a number of techniques that attempt
to quantitatively summarize the plot’s geometric appearance. For ex-
ample, Kamenet al.have extended the qualitative, visual classification
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system of Wooet al. into a quantitative system by incorporating stan-
dard time-domain statistics into the existing Poincaré plot categories
[6]. Fitting an ellipse to the Poincaré plot’s shape is another technique,
and one that is becoming increasingly popular [7]–[10]. Other studies
have employed the Pearson’s correlation coefficient to depict the shape
[11]. While it is often suggested that these indexes are able to measure
qualities of the variability that are nonlinear and/or independent of the
standard linear indexes, we show that this is not actually the case.

In this study, we consider a number of popular HRV measurements
that are based on the Poincaré plot. We provide expressions that connect
each measure to existing linear measures of heart rate variability. This
accomplishes two things. First, it provides insight into Poincaré plot ge-
ometry in terms of the well-understood existing indexes of HRV. Sec-
ondly, it shows that these measures are not independent of the existing
commonly employed linear statistics. Therefore, the intrinsic ability
of the Poincaré plot to identify nonlinear beat-to-beat structure is not
being exploited. We conclude with suggestions regarding the potential
value of qualitative Poincaré plot examination and also suggest quanti-
tative measures that might successfully reflect the significant features
of Poincaré plots.

II. THE LINEAR HRV INDICES

This section describes the standard linear indexes of HRV. In this
paper, the time-course of the RR intervals is denoted byRRn, with
n = 1 � � �N . We assume that only a finite number of intervals are avail-
able. Poincaré plots are most often taken of 5–10-min intervals, or of
a 24-h segment [12]. For 5–10-min segments, wide-sense stationarity
may be assumed, and the following basic properties are, for practical
purposes, true:E[RRn] = E[RRn+m] andE[RR2

n
] = E[RR2

n+m].
The standard time-domain measures of HRV are as follows.

A. Standard Deviation of the RR Interval

The standard deviation of the RR intervals, denoted bySDRR, is
often employed as a measure of overall HRV. It is defined as the square
root of the variance of the RR intervals

SDRR = E[RR2
n
]� RR

2
(1)

where the mean RR interval is denoted byRR = E[RRn].

B. Standard Deviation of the Successive Differences

The standard deviation of the successive differences of the RR inter-
vals, denoted bySDSD, is an important measure of short-term HRV. It
is defined as the square root of the variance of the sequence�RRn =
RRn � RRn+1 (the delta-RR intervals)

SDSD = E[�RR2
n
]��RRn

2
: (2)

Note that�RRn = E[RRn] � E[RRn+1] = 0 for stationary in-
tervals. This means that the root-mean square (rms) of the successive
differences is statistically equivalent to the standard deviation of the
successive differences

SDSD = rmsSD = E[(RRn �RRn+1)2]: (3)
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C. Autocorrelation and Autocovariance

The autocorrelation function is an important measure of HRV simply
because its Fourier transform is the power spectrum of intervals. The
autocorrelation function of the RR intervals is defined as

RR(m) = E[RRnRRn+m]: (4)

Spectral analysis is normally performed on the mean-removed RR
intervals and, therefore, the mean-removed autocorrelation function,
called the autocovariance function, is often preferred

�RR(m) = E[(RRn � RR)(RRn+m � RR)]: (5)

For stationary RR intervals, the autocovariance function is related to
the autocorrelation function

�RR(m) = RR(m)� RR
2
: (6)

The autocovariance function is related to the variance of the RR in-
tervals asSDRR2 = �RR(0), and the variance of the delta-RR in-
tervals,SDSD2 = 2(�RR(0) � �RR(1)) = 2(RR(0) � RR(1)).
Accordingly, these indexes are both linear.

III. RR INTERVAL POINCARÉ PLOT DESCRIPTORS

Statistically, the plot displays the correlation between consecutive
intervals in a graphical manner. Nonlinear dynamics considers the
Poincaré plot as the two-dimensional (2-D) reconstructed RR interval
phase-space, which is a projection of the reconstructed attractor
describing the dynamics of the cardiac system [13]. The RR interval
Poincaré plot typically appears as an elongated cloud of points oriented
along the line-of-identity. The dispersion of points perpendicular to
the line-of-identity reflects the level of short-term variability [5]. The
dispersion of points along the line-of-identity is thought to indicate
the level of long-term variability. Later, we provide a justification of
these statements. We now relate the common descriptors of a Poincaré
plot’s shape to linear measures of HRV.

A. Ellipse Fitting Technique

To characterize the shape of the plot mathematically, most re-
searchers have adopted the technique of fitting an ellipse to the plot, as
Fig. 1 details. A set of axis oriented with the line-of-identity is defined
[9]. The axis of the Poincaré plot are related to the new set of axis by
a rotation of� = �=4 rad

x1
x2

=
cos � � sin �

sin � cos �

RRn
RRn+1

: (7)

In the reference system of the new axis, the dispersion of the points
around thex1 axis is measured by the standard deviation denoted by
SD1 [9]. This quantity measures the width of the Poincaré cloud and,
therefore, indicates the level of short-term HRV [2], [5], [6], [9]. The
length of the cloud along the line-of-identity measures the long-term
HRV and is measured bySD2 which is the standard deviation around
thex2 axis [2], [5], [6], [9]. These measures are related to the standard
HRV measures in the following manner:

SD12 =Var(x1) = Var
1p
2
RRn �

1p
2
RRn+1

= 1

2
Var(RRn � RRn+1) =

1

2
SDSD2: (8)

Thus, theSD1 measure of Poincaré width is equivalent to the stan-
dard deviation of the successive intervals, except that it is scaled by

Fig. 1. An example Poincaré plot detailing the ellipse fitting process. The
coordinate systemx1 and x2 is established at 45to the normal axis. The
standard deviation of the distance of the points from each axis determines the
width (SD1) and length (SD2) of the ellipse.

1=
p
2. This means that we can relateSD1 to the autocovariance func-

tion

SD12 = �RR(0)� �RR(1): (9)

With a similar argument, it may be shown that the length of the
Poincaré cloud is related to the autocovariance function

SD22 = �RR(0) + �RR(1): (10)

By adding (9) and (10) together, we obtain the result

SD12 + SD22 = 2SDRR2: (11)

Finally

SD22 = 2SDRR2 � 1

2
SDSD2: (12)

Equation (12) allows us to interpretSD2 in terms of existing indexes
of HRV. It can be argued thatSD2 reflects the long-term HRV, however,
we delay the discussion until later in the section. Fitting an ellipse to
the Poincaré plot does not generate indexes that are independent of the
standard time domain HRV indexes. In fact, the width of the Poincaré
plot is a linear scaling of the most common statistic used to measure
short-term HRV, theSDSD index. In other words, the width of the
Poincaré plot should correlate extremely highly with other measures
of short-term HRV, as indeed it does [2].

B. Histogram Techniques

Another method to quantify the shape of the Poincaré plot is to mea-
sure the statistical properties of various projections of the plot via the
histogram distribution [2], [5], [6]. Fig. 2 shows the three main “views”
utilized. They are as follows.

RR Interval Histogram:The histogram of the Poincaré plot points
projected onto thex axis (or they axis). This histogram is usually quan-
tified by the mean and standard deviation, which correspond directly to
the standard measuresRR andSDRR. This view provides summary
information on the overall HRV characteristics.
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Fig. 2. Details the construction of the width (or delta-RR interval) histogram, the RR interval histogram and the length histogram. Each of these histograms is a
projection of the points of the Poincaré plot.

“Width” or Delta-RR Interval Histogram: This is the histogram of
the Poincaré plot points projected along the direction of the line-of-
identity. It is not exactly equivalent to the delta-RR interval histogram;
the abscissa has been scaled by the factor1=

p
2. As expected of the

delta-RR intervals, the histogram has a zero mean. Mathematically, it
is the distribution ofx1. Therefore, the standard deviation of the width
histogram is equal toSD1, which is a scaling of theSDSD measure as
discussed previously. This histogram provides summary information
on the short-term characteristics.

“Length” Histogram: This histogram is obtained by projecting
the Poincaré plot points perpendicular onto the line-of-identity. The
histogram is described mathematically by the distribution ofx2
and the standard deviation is, therefore, equivalently equal toSD2.
Consequently, due to its connection withSD2, the length histogram
portrays the long-term characteristics of HRV.

A summary of the various views of the Poincaré plot is illustrated in
Fig. 2. The dispersion properties of these histograms are characterized
bySDRR, SD1 andSD2. Hence, they are linked to the standard time-
domain measures of HRV.

C. Correlation Coefficient

Some researchers have employed the correlation coefficient of the
Poincaré plot to characterize its shape [11]. This measure is

rRR =
E RRn � RR RRn+1 � RR

E RRn �RR
2

E RRn+1 �RR
2

: (13)

For the Poincaré plot, the correlation coefficient can be expressed in
terms of the autocovariance function

rRR = �RR(1)=�RR(0): (14)

Therefore, in a similar fashion to the other measures of Poincaré plot
shape, the correlation coefficient is a linear measure, even though it is
based on the Poincaré plot which displays nonlinear features. None of
these summary statistics are sensitive to the nonlinear features that the
plot displays.

D. Short- and Long-Term Variability

The length and width of the Poincaré plot have been suggested as in-
dicative of the levels of long- and short-term variability. It is reasonably
clear that the standard deviation of the delta-RR intervals, as measured
by SDSD, rmsSD, or SD1, is a measure of short-term HRV. In fact,
this statement can be made even more precise: these indexes are mea-
sures of the variability over a single beat.

The standard deviation of the RR intervals, as measured bySDRR,
is often employed as a measure of long-term HRV. However, there is a
problem with this interpretation because this quantity measuresall the
variability, long-termandshort-term, not just the long-term variability.

For example, take a set of RR intervals that has variability only over
a single beat. Such a sequence can be described as alternating between
two values, e.g., a, b, a, b, etc. The Poincaré plot of this sequence is
depicted in Fig. 3. It is clear that the sequence contains variability only
over a single beat: every second beat is equivalent. Another way of
clarifying this point is that the sliding two-beat average of the sequence
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Fig. 3. Poincaré plot of the alternating sequence (a, b, a, b,. . .). The zero
length of the Poincaré plot indicates that there is no long-term variability in this
sequence. The width indicates the short-term variability.

is a constant. IfSDRR is taken to be an index of long-term variability,
a contradiction arises becauseSDRR is not zero.

We propose that Poincaré plot length is a more consistent and ap-
pealing measure of long-term variability. Consider the alternating se-
quence already mentioned. The Poincaré plot width measure states that
this sequence has short-term variability, as expected. The length of the
plot is zero indicating that the sequence has no long-term variability,
as desired.

With these ideas in hindsight, we can now explain the significance of
(11) and (12). Equation (11) states that the sum of the short-term and the
long-term variability is the total variability. Equation (12) affirms that
the long-term variability is the total variability minus the contribution
due to short-term variability.

IV. GENERALIZATIONS OF THEPOINCARÉ PLOT

Two different types of scatter plots that are encountered in the litera-
ture can be considered simple generalizations of the Poincaré plot. The
first entails altering the “lag” of the plot, while the second modifies the
“order” of the plot. We discuss the properties of both.

A. Lagged Poincaré Plots

Instead of plottingRRn againstRRn+1, some researchers have in-
vestigated plottingRRn againstRRn+m wherem is allowed to vary
from 1 to some small positive value, say six or eight. In nonlinear dy-
namics, this is known as plotting the 2-D phase space with the time se-
ries embedded with lagm. In general, the plot is still clustered around
the line-of-identity. However, the length and width of the plot are al-
tered as the lag is increased. It is straightforward to show the width and
length measuresSD1 andSD2 can be generalized for lagm

SD1(m)2 =�RR(0)� �RR(m)

SD2(m)2 =�RR(0) + �RR(m): (15)

The length and width of the lag-m Poincaré plot is related to the
covariance function at lagm. Note also that

�RR(m) = 1

2
(SD2(m)2 � SD1(m)2): (16)

This result is very interesting, as it states that the set of lagged
Poincaré plots are a complete description of the autocovariance
function and, hence, also the power spectrum of the intervals. Equa-
tion (16) provides us with a geometrical relationship between the
autocovariance function and the Poincaré plot’s shape. If�RR(m) =
0, thenSD1 = SD2 and the length and width of the plot are equal.
If �RR(m) > 0 thenSD1 < SD2. Accordingly the plot is longer
than it is wide, i.e., dominated by short-term activity. Inversely, if
�RR(m) < 0 thenSD1 > SD2 and the plot is shorter than it is wide.

Fig. 4. A diagram of the third-order Poincaré plot. The projection of the 3-D
cloud of points onto any of the three planes formed by the axes corresponds to
either the standard Poincaré plot, or a lag-2 Poincaré plot.

This concept is similar to the concept of the sign of the correlation
coefficient as it relates to a scatter-plot. In fact the series of correlation
coefficients of the lagged Poincaré plots are simply

rRR(m) = �RR(m)=�RR(0): (17)

This is just a scaled version of the autocovariance function.

B. Higher Order Poincaré Plots

The standard Poincaré plot is a scatter-plot of the pairs
(RRn; RRn+1), and is considered to be of first order. The second
order Poincaré plot is a three-dimensional (3-D) scatter-plot of the
triples (RRn; RRn+1; RRn+2). There are three common views of
the 3-D shape of this plot, each being a view along one of the axis.
These views result in 2-D projections of the 3-D cloud onto each
of the coordinate planes(RRn; RRn+1), (RRn+1; RRn+2) and
(RRn; RRn+2). Fig. 4 displays this idea graphically. The first two
views are equivalent to the standard Poincaré plot. The third is the
lag-2 Poincaré plot.

This idea can be generalized into higher dimensions, with the pro-
jections of the plot onto the coordinate planes being lagged Poincaré
plots. So, an orderm Poincaré plot is geometrically described by the
set of lagged Poincaré plots up to and including lagm. The properties
of lagged Poincaré plots have already been discussed and the results
carry over to higher order Poincaré plots.

V. SUMMARY VERSUSBEAT-TO-BEAT FEATURES

All the measures we have discussed so far have been time domain
summary statistics, such as means and standard deviations. The
Poincaré plot is shown to be capable of showing these quantities
in a visual manner. It is, however, also capable of displaying the
detailed beat-to-beat dynamics of the heart’s behavior. An example
of beat-to-beat structure in the RR intervals is small islands of points
surrounding the main cloud. See Fig. 5.

These islands of points are often being generated by ectopic rhythms
that are separate from the sinus rhythm. Accordingly, these points
should be removed from the RR interval record before calculating
standard statistics otherwise the quantities of interest will suffer
serious distortion. The removal process is a tedious beat-to-beat
analysis that can only be partially automated and is, therefore, prone to
human error. After removal of ectopic intervals, the Poincaré plot can
be examined for the presence of islands to determine how successful
the ectopy detection process was, and also to check if the removal
interpolation process has introduced serious distortion to the data. In
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Fig. 5. A subject who has intermittent ventricular premature contractions. The
Poincaré plot clearly separates the activity caused by the ectopic and the activity
caused by sinus rhythm.

Fig. 6. A subject with prominent RSA. The oscillation caused by respiration
causes a gradual increase in heart rate during inspiration, followed by a rapid
decrease during expiration. This causes the plot to appear asymmetrical.

addition, the Poincaré plot can identify the points likely to result from
ectopic origin beforehand, facilitating the removal process.

Another source of beat-to-beat structure is respiratory sinus ar-
rhythmia (RSA), which is the influence of breathing modulating the
RR intervals. Fig. 6 is an example of this condition. The decrease in
RR interval length is usually much more rapid than the increase in
interval length. Therefore, strong RSA typically appears as a spur
above the line of identity, indicating the rapid slowing of the heart
rate. The appearance of this feature makes the Poincaré plot a useful
tool in the evaluation of RSA.

VI. CONCLUSION

We have shown that several popular techniques that characterize the
geometry of a Poincaré plot are related to linear indexes of HRV. In
addition, we provide arguments supporting the claim that the width of

the Poincaré plot corresponds to the level of short-term HRV, while the
length of the plot corresponds to the level of long-term variability.

The methods of quantifying the Poincaré plot that we have inves-
tigated herein are not capable of depicting the additional beat-to-beat
variability information shown on a Poincaré plot. However, the addi-
tional information is of considerable value. The fact that the width and
length of a Poincaré plot corresponds so conveniently to time domain
summary statistics is a very nice feature. However, simply treating the
Poincaré plot as a tool for graphically representing the summary sta-
tistics is to ignore some of its most potent abilities. The problem with
the summary methods of quantifying the Poincaré plot is that they ig-
nore powerful beat-to-beat structure displayed by the plot. Techniques
do exist that characterize the dispersion of the points. An interesting
study by Hnatkovaet al.has employed a unique density based approach
that has met with considerable success for risk stratification after my-
ocardial infarction [14]. Cohenet al.have applied the central tendency
measure to second-order difference plots, and this technique could be
applied to Poincaré plots also [15]. Addioet al. have used 3-D tech-
niques based on the number of peaks and the distance of peaks from
the line of identity to extract information from the Poincaré plot [7].
These techniques are likely to be measuring independent, nonlinear in-
formation on the intervals. Unfortunately, however, they are not nearly
as popular as the “linear” Poincaré plot measures in the literature. Fur-
ther investigations need to concentrate on techniques that can charac-
terize the dispersion of the points displayed by the Poincaré plot.
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Parametric Modeling of Somatosensory Evoked Potentials
Using Discrete Cosine Transform

Ou Bai*, Masatoshi Nakamura, Takashi Nagamine, and
Hiroshi Shibasaki

Abstract—This paper introduces a parametric method for identifying
the somatosensory evoked potentials (SEPs). The identification was carried
out by using pole-zero modeling of the SEPs in the discrete cosine transform
(DCT) domain. It was found that the DCT coefficients of a monophasic
signal can be sufficiently approximated by a second-order transfer func-
tion with a conjugate pole pair. The averaged SEP signal was modeled by
the sum of several second-order transfer functions with appropriate zeros
and poles estimated using the least square method in the DCT domain. Re-
sults of the estimation demonstrated that the model output was in an ex-
cellent agreement with the raw SEPs both qualitatively and quantitatively.
Comparing with the common autoregressive model with exogenous input
modeling in the time domain, the DCT domain modeling achieves a high
goodness of fitting with a very low model order. Applications of the pro-
posed method are possible in clinical practice for feature extraction, noise
cancellation and individual component decomposition of the SEPs as well
as other evoked potentials.

Index Terms—Decomposition, discrete cosine transform, identification,
pole-zero model, somatosensory evoked potentials.

I. INTRODUCTION

Somatosensory evoked potentials (SEPs) are generated by surface
excitation of peripheral nerves with an electrical stimulus, and are mea-
sured by placing electrodes on several well-defined positions on the
spine and scalp. In clinical practice, the SEP records are commonly
used to assess conduction in the somatosensory pathway. Since there
are various kinds of neural and nonneural artifacts in the SEP signals,
many of them must be averaged to produce a curve that is adequate for
analysis.

The purpose of the present study is twofold; first, by using the post-
processing technique, we wish to develop a noise reduction method,
which allows the clinician to significantly reduce testing time. This is
desirable since many of the patients subjected to the testing are unable
to withstand the lengthy process of averaging many waveforms.Second,
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we wish to create an accurate mathematical model that simulates the re-
sponses of the nervous system to stimuli, which is benefit for the evalu-
ation of the latencies as well as the component intervals of the SEPs.

The noise reduction for identifying the SEPs have been widely in-
vestigated in the previous studies [1]. One of the common methods is to
estimate the SEPs by using parametric models, such as autoregressive
model with exogenous input (ARX) model [2]. However, those para-
metric models introduce a very high model order as well as a compli-
cated model structure, which are not efficient and convenient for prac-
tical SEP analysis. Further, for achieving a good fitting, data prepro-
cessing is required, such as removing trends, etc. For the purpose of
the reduction of the number of parameters, a second-order model with
time lag was developed to represent the SEPs in our previous study [3].
But, difference between the time signal of the model output and that of
the raw SEPs was not satisfactorily small.

A new method for modeling SEPs was proposed in the current study.
The model was constructed based on the transformed signal of the
SEPs. By using discrete cosine transform (DCT) of the raw SEPs, the
DCT coefficients of a component wave of the SEPs were sufficiently
represented by a second-order transfer function with a conjugate pole
pair. The effectiveness of the proposed method was evaluated both
qualitatively and quantitatively.

II. M ETHODS

A. Subjects and Data Acquisition

Eleven healthy subjects, aged from 18 to 38 years, volunteered for
the present study. The pain-stimulation method can be found in [3]. The
analog electroencephalogram (EEG) signals referenced to the linked
F3–F4 were amplified and filtered with the bandpass of 10–200 Hz,
and then converted to digital data with the sampling rate of 500 Hz and
stored into the disk. In the current study, the EEG data from Cz (inter-
national 10–20 system), which were unassociated with any artifact in
the period of 0.6 s after the stimulus, were adopted for analysis.

B. Analysis of SEP Time Signal

1) Waveform of SEP Time Signal:The waveform of a SEP signal
in the time domain is the basis for developing an appropriate mathe-
matical model. Fig. 1(a) illustrates a typical SEP waveform obtained
by averaging 40 trials with time locked to the stimulus, in which the
stimulating time was added at the beginning. The major components
in the SEPs include; a negative response (N2) and a positive response
(P2). After the positive response, the electrical potentials move up-
wards resulting a small negative kink. The triphasic waveform of the
SEPs consists of three monophasic component waves. The shape of a
monophasic component wave in SEPs is similar to a bell, and it has
three important factors for physiological analysis; the latency to the
stimulus, the response amplitude, and the rising and falling slope.

2) Contributions in the SEPs :After averaging, the generated SEP
signal is still noise contaminated. The averaged signal has two major
contributions; one is a deterministic signal of the real somatosensory re-
sponses and the other is a stochastic signal that is mainly from the back-
ground activity. Therefore, the raw averaged SEPs can be described by
the summation as

x(n) = s(n) + v(n) (1)

where
x(n) averaged SEPs;
s(n) real somatosensory responses;
v(n) superimposed noise of an independent stochastic process.
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