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Brennan, Michael, Marimuthu Palaniswami, and Pe-
ter Kamen. Poincaré plot interpretation using a physiolog-
ical model of HRV based on a network of oscillators. Am J
Physiol Heart Circ Physiol 283: H1873-H1886, 2002;
10.1152/ajpheart.00405.2000.—In this paper, we develop a
physiological oscillator model of which the output mimics the
shape of the R-R interval Poincaré plot. To validate the
model, simulations of various nervous conditions are com-
pared with heart rate variability (HRV) data obtained from
subjects under each prescribed condition. For a variety of
sympathovagal balances, our model generates Poincaré plots
that undergo alterations strongly resembling those of actual
R-R intervals. By exploiting the oscillator basis of our model,
we detail the way that low- and high-frequency modulation of
the sinus node translates into R-R interval Poincaré plot
shape by way of simulations and analytic results. With the
use of our model, we establish that the length and width of a
Poincaré plot are a weighted combination of low- and high-
frequency power. This provides a theoretical link between
frequency-domain spectral analysis techniques and time-do-
main Poincaré plot analysis. We ascertain the degree to
which these principles apply to real R-R intervals by testing
the mathematical relationships on a set of data and establish
that the principles are clearly evident in actual HRV records.

heart rate variability; quantitative beat-to-beat analysis

THE STUDY OF HEART RATE variability (HRV) centers on
the analysis of beat-to-beat fluctuations in heart rate.
The series of time intervals between heartbeats, re-
ferred to as R-R intervals, are measured over a period
of anywhere from 10 min to 24 h (15). Attention has
focused on HRV as a method of quantifying cardiac
autonomic function. In this study, we present new
results in developing a novel mathematical model that
describes the interactions between the sympathetic
and the parasympathetic nervous systems and heart
rate fluctuations over a short-term period of 5—10 min.
Whereas our model is based on standard and already
accepted physiological principles, the mathematical
formulation permits in-depth numerical and analytic
investigations yielding valuable insight into clinical
R-R interval analysis techniques.

Standard analysis techniques commonly estimate
the levels of sympathetic and parasympathetic activity
from the variability in the R-R intervals. Our attention
has focused on two specific HRV analysis techniques.
The first is the frequency domain spectral analysis of
R-R intervals (2, 4, 6, 14, 20). R-R interval Poincaré
plot analysis is the second technique, which is a newer
nonlinear method (8—10, 21, 22). To date, R-R interval
Poincaré plot analysis has not been clearly related to a
physiological model of HRV. The main objective of our
model is to provide insight into the significance of
Poincaré plot morphology and not to accurately repro-
duce the complex autonomic activity of any particular
individual.

Our model emulates the differing varieties of Poin-
caré plot patterns seen in subjects over a range of
sympathovagal balances. In addition, the model pro-
vides a unique link between spectral analysis tech-
niques and the emerging analysis techniques that rely
on the shape and/or other morphological properties of
the Poincaré plot. Analytic results on the “lengths” and
“widths” of the Poincaré plots generated by our model
are developed. Simulations are employed to confirm
the analytic results on the model. However, the model
does not necessarily represent the full range of auto-
nomic activity. Therefore, to evaluate the validity and
scope of the model and analysis, we provide results by
using a set of data from actual subjects.

GLOSSARY
Model

Mean heart rate, Hz
t Time, s
k Beat number
t Time of kth beat, s
1 Mean interbeat interval, s
Cs Sympathetic coupling constant, Hz

Co Parasympathetic coupling constant, Hz
s Frequency of sympathetic modulation, rad/s
wp Frequency of parasympathetic modulation,
rad/s
s(t) Sympathetic activation
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p() Parasympathetic activation

m(¢)  Modulation function, Hz

x(t) IPFM output spike train, Hz
y(t) IPFM integration process output

Analysis

N Number of sinusoids
C, Coupling constant for sinusoid n, Hz
bn Phase of sinusoid n, radians
LY Deviation time of beat 2 from regular spike
train, s
o Frequency of sinusoid n, rad/s
RR;, Interbeat interval, s
ARR;, Delta interbeat interval, s
L Length of Poincaré plot, s
w Width of Poincaré plot, s

HRYV indexes

LF  Low-frequency power, 1/s2
HF High-frequency power, 1/s2
SDRR Standard deviation of interbeat intervals, s
SDSD Standard deviation of successive differences
of interbeat intervals, s

HRV ANALYSIS

It is well known that perturbations to autonomic
activity, such as respiratory sinus arrhythmia and
vasomotor oscillations, cause corresponding fluctua-
tions in heart rate (2, 17). HRV analysis seeks to
determine the autonomic activity from heart rate vari-
ability. Spectral analysis is the standard technique
used to determine the presence of respiratory sinus
arrhythmia and vasomotor oscillations (17, 18). This is
accomplished by dividing the spectrum into low- (0.04—
0.15 Hz) and high- (0.15-0.4 Hz) frequency bands,
known as the LF and HF bands, effectively distin-
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guishing between rapid respiratory modulator activity
and slow vasomotor modulation of heart rate (see Fig.
1A). HF power is supposedly a pure measure of para-
sympathetic activity, and LF power is reflective of
sympathetic modulation and parasympathetic tone, al-
though it is sometimes considered to reflect sympa-
thetic tone (6). In this study, spectral estimates are
given by the autoregressive parametric technique by
using the modified covariance method (12) for the
smooth spectrum and easy identification of the spectral
peaks.

The Poincaré plot is a scatterplot of the current R-R
interval plotted against the preceding R-R interval.
Poincaré plot analysis is a quantitative visual tech-
nique, whereby the shape of the plot is categorized into
functional classes (21, 22). The plot provides summary
information as well as detailed beat-to-beat informa-
tion on the behavior of the heart (9). Points above the
line of identity indicate R-R intervals that are longer
than the preceding R-R interval, and points below the
line of identity indicate a shorter R-R interval than the
previous. Accordingly, the dispersion of points perpen-
dicular to the line of identity (the “width”) reflects the
level of short-term variability. This dispersion can be
quantified by the standard deviation of the distances
the points lie from the line of identity. This measure is
equivalent to the standard deviation of the successive
differences of the R-R intervals [standard deviation of
successive differences (SDSD) or root-mean-square of
successive differences (RMSSD)] (10). The standard
deviation of points along the line of identity (the
“length”) reflects the standard deviation of the R-R
intervals (SDRR). Figure 1B details these quantitative
measures of Poincaré plot shape. Poincaré plots appear
under different names in the literature: scatter plots,
first return maps, and Lorenz plots being prominent
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Fig. 1. A: heart reat variability (HRV) spectrum. Respiratory component near 0.3 Hz and the vasomotor component
near 0.1 Hz are clearly present. HF, high frequency; LF, low frequency. B: Poincaré plot of the same data. Length

and width are shown graphically on plot.
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Fig. 2. Three coupled oscillators representing the cardiac control
system. Cs, sympathetic coupling constant; Cp,, parasympathetic cou-
pling constant.

terms. A distinct advantage of Poincaré plots is their
ability to identify beat-to-beat cycles and patterns in
data that are difficult to identify with spectral analysis
(21, 22).

PHYSIOLOGICAL HRV MODEL BASED ON
INTERACTING OSCILLATORS

In this section, we develop a model by using a cou-
pled network of oscillators, each representing a specific
facet of the baroreflex and autonomic nervous system.
The architecture of the network and the coupling are
shown in Fig. 2. The coupling constants Cs and C,
denote the level at which the corresponding oscillator
modulates the sinus node oscillator, where s is sympa-
thetic and p is parasympathetic. For the purpose of
clarity, we define the respiratory oscillator as the para-
sympathetic oscillator.

Sympathetic oscillator. The sympathetic oscillator (s)
represents the combined LF power of the HRV spec-
trum, which includes vasomotor activity. It is governed
by Eq. 1

(1)

where s represents the level of sympathetic activation.
Sympathetic activity occurs on a slow time scale-alter-
ing heart rate over a long duration (2, 16, 17). Accord-
ingly ws is assigned a small value, producing slow
waves of more than 10 s duration.

It is generally accepted that low levels of sympa-
thetic activity will result in slow oscillations of sympa-
thetic nerve activity entrained to the vasomotor oscil-
lations. However, as the level of sympathetic activity
increases, these oscillations are damped and the fluc-
tuations disappear such that under intense sympa-
thetic drive, the heart rate becomes metronomic in its
regularity. This damped effect can be achieved by tak-
ing ws — 0 or by reducing the coupling between the
sympathetic oscillator and the sinus oscillator by tak-
ing Cs — 0.

Parasympathetic respiratory oscillator. This oscil-
lator is intended to represent short-term activity
impinging on the sinus node via the parasympathetic
nervous system. Respiratory oscillations affect both
the sympathetic and parasympathetic nervous sys-
tems; however, because of the slow response time of

s = sin (wgt)
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the sympathetic system, these rapid oscillations are
mediated purely by the parasympathetic system (2,
16, 17). The effects of respiration are described by
the parasympathetic respiratory oscillator (p), which
is governed by Eq. 2,

p = sin (w,?) (2)
where p represents the level of parasympathetic respi-
ratory activation. This oscillator has a value of wp
larger than ws, typically at the modeled respiration
frequency.

Sinus oscillator. The sinus node oscillator is based on
the formulation of the well-known integral pulse fre-
quency modulation (IPFM) model. It is a useful de-
scription of how cardiac events are modulated by au-
tonomic nervous activity, and its suitability for
modeling the sinus node has been discussed by a num-
ber of researchers (1, 3, 7). The IPFM model generates
heartbeats by integrating an input signal until it
reaches a preset threshold of unity. At this point, a
pulse is produced and the integrator is reset to zero.
See Fig. 3. The mathematical representation is given in
Eq. 3.

1- J.tk”[HR +om()]d

. (3)
x(t) = 2, d(t—t)

k=1

The signal m(¢) is the input signal representing auto-
nomic activity, and ¢z is the time of the k2th R wave.
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Fig. 3. Integral pulse frequency modulation (IPFM) model. Input
signal HR + m(¢) is integrated until the integrator output y(¢)
reaches the threshold of unity. At this point a pulse is produced in
the output signal x(¢) and the integrator is reset.

AJP-Heart Circ Physiol « VOL 283 « NOVEMBER 2002 « www.ajpheart.org



H1876

When the input signal is zero, the IPFM model gener-
ates heartbeats with an interval equal to I = 1/HR,
where HR is a variable parameter that represents
mean heart rate. It is equal to the actual frequency of
heartbeats in the absence of any modulatory auto-
nomic nervous activity. The input signal m(¢) repre-
sents the effects of modulatory autonomic nervous in-
put and is defined by Eq. 4. If the input signal is
positive, then heartbeats are generated at a faster rate,
whereas a negative input signal causes heartbeats to
be generated at a slower rate. The function x(¢) repre-
sents the series of pulses representing the heartbeats
generated by the model, whereas y(¢) designates the
integrator’s output as a function of time.

We have formulated the modulation of the sinus
oscillator by the sympathetic and parasympathetic os-
cillators as described by Eq. 4

m(t) = Cs(t) + Cyp() (4)
As a result, the sinus oscillator beats at a base rate of
HR Hertz, which is increased or decreased in an addi-
tive linear fashion by sympathetic and parasympa-
thetic respiratory modulation. For the modulating fre-
quencies to appear unaliased in the beat sequence, the
mean beat frequency HR should be higher than the
highest modulating frequency component wy

Wy

27

w
HR > 2>
21T

(5)
The coupling constants Cs and Cjy, reflect the levels of
sympathetic and parasympathetic modulation of the
sinus node, which is not equivalent to the tonic (mean)
levels of sympathetic and parasympathetic activity.
The tonic autonomic influences are included in the
parameter HR, which is a combined function of sym-
pathetic and parasympathetic activity, hormonal re-
sponses, and various parameters of the individual such
as blood pressure. Accordingly HR is a function of the
intrinsic heart rate HR( and the tonic influences of the
autonomic system commonly referred to as the sympa-
thovagal balance (5). Whereas the exact nature of sym-
pathovagal balance is not completely understood, this
concept has been formalized by the following model,
HR = HRy X m X n, due to Rosenblueth and Simeone
(16) and Katona et al. (11) in which m > 1 is the net
sympathetic influence and n < 1 is the net parasym-
pathetic influence. It is still being debated whether
there exist any reliable connections between the tonic
influences m and n and the levels of modulation Cs and
Cp; however, it is often observed that heart rate and
HRYV are inversely related.

Accordingly, we model HR, C, and C}, as free vari-
ables so that it is possible to investigate sympathetic
and parasympathetic interactions with Cs and C, as
functions of HR or sympathovagal balance. Note that
Cs and C;, should be chosen such that HR + m(?) is
strictly positive.

POINCARE PLOT INTERPRETATION OF HR VARIABILITY

CONVERGENCE BETWEEN MODEL AND ACTUAL
HRV DATA

In this section, we demonstrate that our model dis-
plays the features of real R-R intervals under various
induced autonomic balances. We consider the following
conditions: complete autonomic blockade, parasympa-
thetic blockade, and normal sympathetic-parasympa-
thetic balance. Poincaré plots of the model’s output are
compared with plots of actual R-R intervals obtained
from patients under the prescribed autonomic pertur-
bations. The model’s simulated autonomic balance is
adjusted by varying the coupling constants, which al-
ters the levels at which the oscillators influence the
sinus oscillator. For all simulations, except where oth-
erwise mentioned, the following constants were used

HR =1.18 H, w, = 2w X 0.025 rad/s,
0, =27 X 0.344 rad/s (6)

HR corresponds to an R-R interval of 850 ms. The
period of the sympathetic oscillator is set to ~40 s, and
the parasympathetic oscillator is set to a period of ~3
s. Such a LF was used for the sympathetic oscillator,
because it needs to account for the combined power of
the LF and very low-frequency (VLF) bands to achieve
a high degree of similarity between the plots from
simulated and actual data.

Complete autonomic blockade. First, we consider the
model’s output in the absence of coupling, a state that
is easily simulated with Cs and Cj, taking on very small
values. Consider Fig. 4B for which the coupling con-
stants were Cs = Cp, = 0.01. The Poincaré plot appears
as a single dense point termed a “tight cluster.” Be-
cause of the low coupling, there is very little variation
in m(¢), and subsequently the sinus oscillator beats at
a constant frequency of HR Hertz. Accordingly, the R-R
intervals varied little from the constant value 1/HR
seconds. The behavior of a denerved heart, such as
found in the case of a transplant patient as in Fig. 44,
is mimicked. Figure 4C shows the power spectra of Fig.
4, A and B. It is seen that neither the transplant
patient nor the model has any significant spectral
power in either the LF or HF bands.

Unopposed sympathetic activity: parasympathetic
blockade. This scenario is simulated by a high degree of
coupling between the sympathetic oscillator and the
sinus oscillator, whereas a low coupling level is used
for the parasympathetic respiratory oscillator. Accord-
ingly, the coupling constants take the values Cs = 0.21
and Cp, = 0. The model’s output, viewed as a Poincaré
plot in Fig. 5B, is a slender closed loop oriented along
the line y = x and is suggestive of a “cigar” due to its
shape. No variability is present other than the motion
around the loop, a direct result of excluding the para-
sympathetic respiratory oscillator.

The plot in Fig. 5A is of a healthy subject who has
been infused with atropine. The variability witnessed
in this plot is therefore largely a product of sympa-
thetic activity. The total lack of any short-term vari-
ability in our model’s output prevents a clear compar-
ison to this subject except at the most qualitative level.
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Figure 5C shows the effect of artificially adding a small
amount of short-term variability to the model’s output
by adding zero mean Gaussian noise with a standard
deviation of 10 ms to the simulated intervals. A Poin-
caré plot very similar to actual observed cigar-shaped
plots is observed. Real-life physiological systems usu-
ally do contain some level of spontaneous random vari-
ability that is best modeled as noise, particularly at
this level. The model’s output resembles R-R intervals
recorded from patients with degraded parasympathetic
nervous control, such as patients with heart failure
(10). The length of the cigar is directly proportional to
the amplitude of the sympathetic modulation of the
sinus oscillator.

The power spectrum of the atropine-infused subject
in Fig. 5A is shown in Fig. 5D, top. The spectrum is
seen to consist of a substantial level of LF power and
very little HF power. Figure 5D, middle, shows the
power spectra of the model-generated R-R intervals.

H1877
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Fig. 4. Complete autonomic blockade. A: Poincaré plot of sub-
ject with complete autonomic denervation (transplant patient)
with mean R-R interval of 800 ms. B: sinus oscillator with low
coupling to sympathetic and parasympathetic oscillators (Cs =
Cp = 0.01). C: power spectra of A and B.

The single peak in the LF band is the effect of the
sympathetic oscillator with a coupling intensity of 0.21.
Finally, Fig. 5D, bottom, shows the power spectrum of
the model-generated R-R intervals with added noise.
The noise adds a constant level across all frequencies
to the power spectrum, and therefore, its presence does
not overly alter the shape of the spectrum.
Sympathetic: parasympathetic balance. In this sce-
nario, levels of parasympathetic respiratory activity
are introduced. This is simulated by way of a small
coupling intensity for the parasympathetic respiratory
oscillator in addition to a high level of sympathetic
coupling. Figure 6B shows the model’s R-R interval
output for the coupling constants Cs = 0.3 and Cp, =
0.05. A large degree of variability emerges in the mod-
el’s output in which the parasympathetic oscillator is
responsible for the flanging effect or widening of the
cigar shape into a “comet.” Comparing Fig. 6, A and B,
shows how closely the simulated R-R intervals resem-
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Fig. 5. A: Poincaré plot of a subject that has been given atropine to block parasympathetic activity. B: model-
generated R-R intervals when the sympathetic oscillator is coupled (Cs = 0.21 and C,, = 0). C: additive Gaussian
noise with a standard deviation of 10 ms. D: power spectra of A (top), B (middle), and C (bottom).

ble a Poincaré plot of a subject at rest breathing quietly
in the supine position. Increasing the parasympathetic
respiratory oscillator’s coupling intensity increases the
width of the comet and consequently the level of short-
term variability in the R-R intervals. Figure 6C dem-
onstrates this effect with C}, taking on the value of 0.1.
The width of the comet is also dependent on the fre-
quency of the parasympathetic oscillator in an intui-

AJP-Heart Circ Physiol « VOL 283

tive manner: larger values of w, yield wider comets
because short-term variability is increased.

The power spectrum of the supine subject of Fig. 6A
is presented in Fig. 6D, top. A substantial level of both
LF and HF power is displayed. Figure 6D, middle,
shows the power spectrum of the model-generated R-R
intervals. The two peaks produced by the sympathetic
and the parasympathetic oscillators with coupling in-
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Fig. 6. Balanced sympathetic and parasympathetic activity. A: R-R intervals obtained from a subject who is lying
supine and at rest. B: model’s simulated output for the coupling constants Cs = 0.3 and Cp, = 0.05. C: effect of
increasing Cyp, to 0.1. D: power spectra of A (top), B (middle), and C (bottom).

tensities 0.3 and 0.05 are clearly shown. Figure 6D,
bottom, displays the power spectrum of Fig. 6C, which
has an increased value of 0.1 for the parasympathetic
oscillator’s coupling.

A significant difference exists between the Poincaré
plots of the model-generated R-R intervals and the R-R
intervals obtained clinically: the density of the points in
the simulated cases are skewed toward the lower left
corner of the plot, whereas actual R-R intervals are more

centrally distributed. The core of this discrepancy lies in
the highly periodic nature of the oscillators. Fluctuations
produced by the actual autonomic nervous system are not
pure sinusoidal signals. Instead they resemble a random
walk, which obtains low and high R-R interval lengths
occasionally, while usually fluctuating about a mean
value without deviating widely. It is important to observe
that the lengths and widths of Fig. 6, A and B, are
roughly the same. Our model shows it is this feature that
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corresponds to the balance of LF and HF power being
similar, not the dispersion of the points within the Poin-
caré plot.

MATHEMATICAL ANALYSIS OF HRV MODEL

This section develops a mathematical analysis used
to investigate the length and width of the Poincaré
plots generated from the HRV model developed in the
previous sections. Because the model is a simplification
of actual HRV mechanisms, these results will not apply
to real HRV data in an exact sense. However, the
results provide clear insight into the manner in which
Poincaré plot descriptors vary as sympathetic and
parasympathetic modulation levels are varied. Specif-
ically, we characterize the theoretical dependency be-
tween LF and HF modulators and the shape of an R-R
interval Poincaré plot generated by our model.

In accomplishing this analysis, we require an explicit
solution to the R-R interval series. The remainder of
this section derives this result. By defining the time of
the initial beat to be the origin ¢o = 0, the defining
equation for the IPFM oscillator (Eq. 3) can be ex-
pressed nonrecursively as

J.tk [HR + m(t)]dt = k 7)

0

where m(t) is the modulating signal (3). In our model
m(t) consists of two frequency components. It turns out
to be just as easy to work with N frequency compo-
nents, so we consider m(t) = EflV:lCncos(u)nt + &,) with
w, < 2mHR for all n, i.e., slow modulation. The defining
equation becomes

N
f 141 Cocos (of + d)lde =kI  (8)

0 n=1

We have also divided through by HR and expressed I =
1/HR to make the equations simpler. After integrata-
tion, the general relationship

N
ty+ 1, ﬂ[sin (wot, + &,) — sin (b)) =k  (9)

n=1 n

is obtained. Performing the substitution ¢, = kI + 5y,
as per De Boer et al. (3), the following nonlinear rela-
tionship for §;, is obtained

N
8 =—1, ! [sin (@I + &, + ©,5;) — sin (d,)] (10)

n=1W,

The & terms represent the amount each beat deviates
from the regular pulse train ¢, = kI. Equation 10 can be
linearized about 3, = 0 provided w,8; is small for all
n €[1...N]. If the event times are close to a regular
pulse train (3; < I/2m) and the modulation frequencies
are less than the mean beat frequency (0, < 2wHR), it
is obvious that w,d;, < 1. Hence for a large class of
practical pulse trains, including R-R intervals, a linear
analysis is an accurate approximation. Linearizing
about 3, = 0, we obtain

POINCARE PLOT INTERPRETATION OF HR VARIABILITY

8, = —1 >, G [sin (w,k] + &,) — sin (d,)

n=1 W,
+ 0,9, cos (w,kI + &,)] (11)

Solving for &; gives the final expression for the beat
times

e
—1> " [sin (wkl + &,) — sin (d,)]

n=10W,

+

N (12)
1-1 E C, cos (oI + &,)
n=1

The R-R intervals are RR;, = ¢z + 1 — t%. For our model,
N = 2and01 = CS,CQ = Cp,o)1 = Wg, W2 = mpandd)1 =
&2 = 0. In this case, Eq. 12 provides us with an
accurate approximation to the R-R interval series gen-
erated by our HRV model. This result holds so long as
the intervals are approximately regular and the mod-
ulation is slow. This is generally the case for R-R
intervals. However, for subjects with very large HRV,
the assumption that the intervals are approximately
regular may be somewhat inaccurate. For the assump-
tion 85, < I/27 to be compromised, an R-R interval would
have to deviate from the mean R-R interval I by an
amount greater than I/m ~ 0.321.

Length of Poincaré plot main cloud. In this section
we develop an approximation to the length of a Poin-
caré plot, depicted in Fig. 1B, as a function of the HRV
model’s coupling constants Cs and C,. Researchers,
who are dealing with noisy data, often employ the
SDNN as a measure of Poincaré length (10, 19). For the
purposes of this section, in which sequences lacking
random variability are analyzed, it is simpler to define
the length to be the distance between the extreme
right- and left-most points of the Poincaré plot. The
agreement between these two measures is a simple
scaling by a constant. Thus length (L) is defined as the
difference between the largest and smallest R-R inter-
vals as shown.

L= m]?x RR, — mkin RR,

Analytically deriving the maximum and minimum of
the R-R interval series from Eq. 12 is not straightfor-
ward; fortunately, these quantities can be approxi-
mated. By employing the standard approximation (1 +
z)"1=1—zforz <1, Eq. 12 can be approximated as

N
3 ={~1, Cw,[sin (wkl + b,)
n=1

—sin (G)[1 I D, C, cos (kI + d,)] (13)

Expanding the brackets, combining sums, and using
standard trigonometric identities, it is possible to ex-
press Eq. 13 as a sum of sinusoids
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= -1 2 —{sm[m k1+¢n+12 C,, sin (¢,,)]

n=10

N N
- C.C
—sin @)1 X
n=1m=1 n

" fsin [(0, — 0, k] + &,
o

— b, + sin (0, + 0 )kl + &, + &)} (14)
Hence, the R-R interval series, RR, = I + 8, —8,_1, is
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agreement with the true length. As Cs + Cj;, increases,
second-order influences begin to become significant
due to nonlinear effects becoming prominent, as ex-
pected from the analysis. The approximately identical
manner that the coupling constants control the length
can be explained by noting that sin(x) ~ x when x < 1
and for low modulation frequencies w, < 2wHR. Ac-
cordingly, Eq. 17 behaves as

i v -
RR,=1-2I 2 sm[ 21] Cos [u) EL+ &, + 2 C,, sin (¢, I]

n=100,

iy 3 o

[ =l

Assuming the maximum values of the time-varying
sinusoids (those dependent on k) of Eq. 15 are even-
tually sampled simultaneously at some point in time,
an approximation to the upper limit of the length is
obtained by replacing the sinusoids with the value 1.
This approach gives the maximum length obtainable,
a figure that is strictly an upper bound, yet also
serves as an approximation to the true length L for
modulation frequencies significantly less than the
mean beat frequency. This is by virtue of having
sampled frequently enough to examine arbitrarily
close to the upper bound at some point in time.
The upper bound on L is then twice the sum of
the amplitudes of the frequency components de-
scribed in Eq. 15. As C,, < 1, L is largely deter-
mined by the first-order terms. Equation 16 is the
first-order approximation to length. It is noted that
this quantity is no longer the strict upper bound on L
due to discarding the higher order contributions;
however, it remains an approximation to the true

length.
sin
2

Therefore, Poincaré plots obtained from our HRV
model have a length approximated by

416 (‘”) LGl (“’") (17)
S0 omr)| o, ™ \oaR

HR| o
The actual (true) Poincaré plot length as a function of
the HRV model’s coupling constants Cs and C;, over the
range 0.0-0.15 is shown in Fig. 8A (obtained via sim-
ulations). Length appears to be dependent on Cs and Cj,
in an almost identical manner and to behave linearly,
in agreement with this analysis. Figure 8C compares
true length to the approximation to length given by Eq.
17. For Cs + C, < 1, the approximation is in excellent

(16)

L=

o |, | {<n2

m)I:| |: T (wn - wm)j:|
Cos (wn - wn)kl + (d)n - (bm) - T

(wn + wmﬁ] (15)
2

m)I] oS {(mn + w, kI + (b, + b)) —

2
Llem(Cs‘l'Cp) (18)

These results state that HF and LF modulations affect
L in equivalent manners for slow modulation and in a
linear fashion for small coupling intensities. Under
these conditions, length reflects neither the HF nor the
LF modulations more significantly than the other.
Thus, for practical purposes, length may be considered
a measure of total modulation and is akin to the total
power of the modulating signal.

Width of the Poincaré plot main cloud. The width of
the main cloud of an R-R interval Poincaré plot char-
acterizes the dispersion of points about the line of
identity. Common measures of the width are the SDSD
and the RMSSD of the R-R intervals (10, 19). As for the
length of the model-based Poincaré plot, the lack of any

(RR(n),RR(n+1))

" 4= (RR(n+1)-RR(n))|

RR(n+1)-RR(n)

RR(n+1)

RR(n)

RR(n)

Fig. 7. Poincaré width, W, is measured as the largest difference
between consecutive intervals, multiplied by the square root of 2. See
text for additional information.
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random component is exploited, and the width is de-
fined to be the distance between the extremities as
depicted in Fig. 1B. Thus the width is

W= \Emkax|ARRk|

as Fig. 7 details. This expression involves the “delta”
R-R intervals, ARR;, = RR;, — RR;_1, which are also
known as the successive differences of the R-R inter-
vals. They are given by

POINCARE PLOT INTERPRETATION OF HR VARIABILITY

components contribute at minor, yet still significant
levels. As will be explained later, Poincaré plot width
should correlate highly with HF power and correlate at
small levels with LF power.

Poincaré plot morphological properties for the HRV
model. As the previous sections have shown, the corre-
spondence between the HRV model’s parameters and
the Poincaré plot’s shape can be accurately approxi-
mated by a linear transformation for small coupling
intensities

N C j N
ARR, = —4I >, —" sin® ( )sm (w Rl + ¢, +1 EC sin (¢,,) —
n=1 0y,
(0, — w,)] w )] . = -
v x| s sin 0, 0B + (6, = ) = (0, = 0,)]]
+21% > > : (19)
n=1m=1 (l)n <2 (mn+wm)1 . T T
+ sin 2] sin [(w, + o)k + (b, + &) — (0, + 0]

As can be seen from Eq. 19, the ARR intervals posses
no direct current component, which is expected due to
the zero average. Similar frequency content is present
as for the length, except for being phase shifted and
being multiplied by an extra sin(-) term leading to the
squared coefficient. An approximation to W is deter-
mined by taking an upper bound for W (by replacing
the time-varying sinusoids with unity) and retaining
only first-order terms as detailed in the calculations for
length

N

C, I
W=~4\21 S ~" sin (“’2)

n=1Wn

(20)

For our HRV model, this expression is

4\505_2((»5) Cp,2<wp)]
HR[ sin” | —— +wps1n —— 21)

Figure 8B details how true width varies as the coupling
parameters are varied over the range 0.0-0.15. A com-
parison of Eq. 21 to the true width is given in Fig. 8D.
It is seen that the approximation to W is accurate when
Cs + Cp, < 1 but deviates widely as Cs + Cp, becomes
large, due mainly to second-order influences becoming
prominent. It can be seen from Fig. 8B that the level of
HF modulation, Cp, is the dominant parameter control-
ling width. This property is clearly seen from the anal-
ysis, especially for small modulation frequencies (ws <
2wHR) as Eq. 21 behaves approximately as

W ~
J

(Cu) + CLw,) (22)

1
oHR?

Roughly speaking, the width of a Poincaré plot is a
function of the weighted sum of the LF and HF ampli-
tudes, where each amplitude is weighted by the respec-
tive angular frequency. Accordingly, HF components
contribute to the width in larger amounts, and LF

(V)

o, o) o, o)
HRw, " \2HR) HRo,”" \2HR
b
.o s 42 [ o
St <2HR) St <2HR)

HRo,
The significance of this result is that the morphology of
a Poincaré plot encodes the amplitudes of the modula-
tion signal, allowing recovery of the amplitudes for
signals composed of two known frequency components.

)

(23)

HRo,

sin (0/2HR)0.HR - \20.HR
[CS} 1 4 sin (0/2HR) 8 sin (w/2HR) [L]
C,] ~ 4| - sin (w/2HR)w,HR ~ \20,HR |lW
4 sin (0/2HR) 8 sin (w,/2HR)

(24)
v = sin (w,/2HR) — sin (w/2HR)

For our model, it is theoretically possible to estimate
similar characteristics to HRV spectral analysis, such
as LF power, HF power, and HF/LF ratios, from the
shape of the Poincaré plot by assigning appropriate
values to the constants ws and wy. This is in addition to
investigating the detailed beat-to-beat characteristics
of HRV data. It should be noted that this property only
applies exactly for modulation signals composed of only
two frequency components. How well the correspon-
dence generalizes to actual HRV data is dependent on
how well the HRV spectrum is approximated by two
dominant peaks.

GENERALIZATION TO REAL HRV DATA

At this point it is interesting to consider how well the
results of the previous section apply to actual data
obtained from subjects under various autonomic con-
ditions. The results are not expected to apply com-
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Poincare width W

0.3+

0.25

0.2r

0.15+

Width (W)

0.1}

0.05¢

0.08 0.1 0.12  0.14

s

0.04 0.06

Fig. 8. Plots of width and length of Poincaré plot main clouds as the two coupling parameters are varied over the

range 0.0-0.15. A and B: length and width, respectively, obtained

from simulated R-R intervals. C and D: how

analytic approximations to length (solid line compared with Eq. 17, dotted line) and width (solid line compared with

Eq. 12, dotted line) compare.

pletely because they stem from a model of a discrete
spectrum, but the principles identified by the analysis
should be evident.

Data set acquisition. We employ the data set of a
previous study (9) because it contains subjects over a
wide range of autonomic conditions. The data set con-
sists of 10 healthy subjects (5 female, 5 male) aged
between 20 and 40 yr (30.2 = 7.2 means *= SD). Each
subject underwent four autonomic purtubations: 1)
baseline study with subjects in the supine position in a
quiet environment; 2) 70° head-up tilt, which increases
sympathetic activity and decreases parasympathetic
activity; 3) atropine infusion, which markedly de-
creases parasympathetic nervous system activity; and
4) transdermal scopolomine, which increases parasym-
pathetic nervous activity. In all, 40 records were col-
lected, each containing 1,024 R-R intervals.

Data set analysis. For each data set, the length and
width of the Poincaré plot and the LF and HF power

AJP-Heart Circ Physiol « VOL 283

were calculated. The length was calculated by L =
2SDRR, and the width by W = V/2SDSD, as can be
derived from simple geometry. The LF and HF param-
eters were calculated by using the autoagressive tech-
nique with the modified covariance technique (12). The
bands were LF = 0.04-0.15 Hz and HF = 0.15-0.4 Hz.
The length and width of the Poincaré plot were then
derived from the LF and HF power by using Eq. 23
with Cs/HR? = VLF and C,/HR? = VHF. The cou-
pling constants need to be divided by HR twice, once as
HRYV spectral analysis techniques assume that the
modulation signal in Eq. 3 is dimensionless (1-3) and
again as we need to multiply by the mean beat interval
to normalize the discrete spectra units to those of the
continuous spectrum (3). The derived length and width
are compared with the actual length and width by
plotting them against each other as scatterplot. The
value of HR is calculated as the inverse of the average
R-R interval. The choice of suitable values for ws and wp
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Fig. 9. Comparisons of derived parameters versus actual values. Correlation coefficients are 0.94 (A, length from
LF and HF), 0.97 (B, width from LF and HF), 0.81 (C, LF from length and width), and 0.94 (D, HF from length and

width).

is akin to the choice of the LF and HF bands. The
midfrequencies of the bands is the most appropriate
choice, i.e., ws = 2m(0.1) and 0, = 27(0.28) rad/s.
Figure 9A displays the derived length on the vertical
axis and the actual length on the horizontal axis. The
points do reflect the line of identity; however, there
exists a fair amount of variability, which indicates that
that Eq. 23 does not hold entirely. The goodness of fit to
the line of identity can be quantified by the correlation
coefficient. Figure 9A has a correlation coefficient of

0.94, indicating that that Eq. 23 holds reasonably well
in determining the actual length. Equation 23 has a
tendency to underestimate the actual length, which is
partially explained by noting that the length is a mea-
sure of all the modulation, yet LF and HF measure only
the power from 0.04 Hz upwards, ignoring the VLF
band. The derived width versus the actual width is
plotted on Fig. 9B. A very good fit with a correlation
coefficient of 0.97 occurs. The superior performance of
Eq. 23, when predicting the width of a Poincaré plot,
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can be explained by noting that ignoring the VLF
power will not adversely affect the width as it is dom-
inated by HF power.

The same analysis is now repeated for the reverse
situation. Starting with the length and width of a
Poincaré plot, we derive the LF and HF power by using
Eq. 24 with VLF = C/HR? and VHF = C,/HR?. The
derived values of LF and HF are compared with the
actual LF and HF values calculated by spectral anal-
ysis. Figure 9C displays the actual LF power versus the
derived LF power. A correlation coefficient of 0.81
indicates a reasonable fit, and it is clear that the main
trend of the relationship between LF power and length
and width expressed by Eq. 24 holds. Figure 9D com-
pares derived HF power with actual HF power. A
correlation coefficient of 0.93 indicates that Eq. 24
explains the dependency of HF on the length and width
very well.

These results clearly show that the principles iden-
tified from Egs. 23 and 24 are indeed present for actual
HRYV data. The fact that a discrete spectrum consisting
of only two components can explain so much about the
relationships among LF, HF, length, and width of a
Poincaré plot is remarkable.

Poincaré plot morphology for real data. The results of
the previous sections imply that the width is a measure
of short-term variability and the length is a measure of
total variability. This result has consequences for the
correlations between frequency domain indexes and
Poincaré plot indexes. Attempting to correlate LF
power with Poincaré length (or equivalent SDNN mea-
sures) will explain only part of the variations in Poin-
caré length. Substantial portions of the variations are
due to the codependency with HF power and will ap-
pear as uncorrelated noise. In data sets where signifi-
cant variations in both LF and HF power are present,
our model predicts that Poincaré length will correlate
reasonably well with both LF and HF power; however,
it will correlate highly with neither due to the varia-
tions introduced by the other. For Poincaré width, the
dependencies on HF power are stronger than those of
LF power. A strong correlation is expected when com-
paring HF power to Poincaré width, because the vari-
ations due to LF power will be small. LF power should
correlate with Poincaré width, albeit at low levels,
because LF power does influence the width, but the
variations present due to HF power are large and
reduce the correlation coefficient markedly.

Many of these results have already been shown ex-
perimentally. Specifically, our findings corroborate the
findings of Otzenberger et al. (13), who found that
SDNN (Poincaré length) correlated with both LF and
HF power and RMSSD (Poincaré width) correlated
with HF power and, to a lesser extent, LF power.
Tullppo et al. (19), who investigated HRV and exercise,
also present experimental results that agree: SDNN
correlated almost equally with HF (Pearson’s correla-
tion coefficient: r = 0.75) and LF (r = 0.72) power, and
RMSSD correlated highly with HF power (r = 0.97)
and to a lesser yet significant extent with LF power
(r = 0.65).

H1885

In conclusion, we develop a new mathematical model
with a network of oscillators. For the first time, Poin-
caré plots are generated from the model and compared
with Poincaré plots generated from subjects under
various autonomic conditions. Now one can clearly
understand how various autonomic regimes appear on
the Poincaré plot through the use of the model.

Traditionally, researchers have identified length and
width of Poincaré plots with LF and HF powers, re-
spectively, of the HRV signal. However, with the use of
our model, we establish that the length and width are
not separately related but are a weighted combination
of LF and HF power. This investigation provides a
theoretical link between frequency domain spectral
analysis techniques and time domain Poincaré plot
analysis.

To determine the degree to which our results gener-
alize to actual HRV data, we applied the model-based
formulas to a set of clinical data. The results indicate
that the formulas do identify clear trends in the rela-
tionships between the spectral components and Poin-
caré length and width. This gives definitive evidence
that for HRV data, the length is a display of total
modulation and the width indicates predominately
short-term modulation. In summary, this study pro-
vides clear mathematical insight into the nature of
observed data.
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