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Respiratory Sinus Arrhythmia*
Why Does the Heartbeat Synchronize With
Respiratory Rhythm?

Fumihiko Yasuma, MD, FCCP; and Jun-ichiro Hayano, MD, FCCP

Respiratory sinus arrhythmia (RSA) is heart rate variability in synchrony with respiration, by
which the R-R interval on an ECG is shortened during inspiration and prolonged during
expiration. Although RSA has been used as an index of cardiac vagal function, it is also a
physiologic phenomenon reflecting respiratory-circulatory interactions universally observed
among vertebrates. Previous studies have shown that the efficiency of pulmonary gas exchange is
improved by RSA, suggesting that RSA may play an active physiologic role. The matched timing
of alveolar ventilation and its perfusion with RSA within each respiratory cycle could save energy
expenditure by suppressing unnecessary heartbeats during expiration and ineffective ventilation
during the ebb of perfusion. Furthermore, evidence has accumulated of a possible dissociation
between RSA and vagal control of that heart rate, suggesting differential controls between the
respiratory modulation of cardiac vagal outflow and cardiac vagal tone. RSA or heart rate
variability in synchrony with respiration is a biological phenomenon, which may have a positive
influence on gas exchange at the level of the lung via efficient ventilation/perfusion matching.

(CHEST 2004; 125:683–690)

Key words: hypercapnia; hypoxia; pulmonary gas exchange; respiratory-circulatory interactions; respiratory sinus
arrhythmia; vagal activity

Abbreviation: RSA � respiratory sinus arrhythmia

T he fundamental function of respiration is to
maintain homeostasis as an interface between

the interior and exterior of the human body. The
respiratory system is open to the outside through
ventilation via the alveoli, while the circulatory sys-
tem consists of two closed loops of pulmonary and
systemic circulation (Fig 1). The neural network,
mainly the autonomic nervous system, is known to
play a major role in the interaction of respiration and
circulation. For example, the oscillations in sympa-
thetic nerve discharge synchronizing with respiratory

rhythm were described by Adrian and colleagues1

� 70 years ago. However, the mechanisms respon-
sible for the respiratory modulation of autonomic
activity remain incompletely understood today. The
fluctuations in BP in synchrony with respiration are
unlikely to be mediated by sympathetic activity,
because the time constant of the sympathetic vaso-
motor response is too long to respond faithfully to
neural signals oscillating at a frequency of � 3 to 4
cycles per minute.2 Moreover, plenty of mechanical
and reflex stimuli are likely to affect respiratory
modulation of BP (some with opposing influences on
BP). For example, a breathing-related swing in BP
seems to depend not only on respiratory rate but also
on the fullness of the central circulation, and the
direction and magnitude of an intrathoracic pressure
change during respiration.3

Respiratory sinus arrhythmia (RSA), one of the
physiologic interactions between respiration and cir-
culation, is heart rate variability in synchrony with
respiration, by which the R-R interval on an ECG is
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shortened during inspiration and prolonged during
expiration. RSA has been a focus of study since its
first description by Ludwig4 in the mid-19th century.
In Figure 2, a polygraphic recording of a conscious
dog is displayed, since dogs are known to have a
prominent RSA.5,6 A clustering of heartbeats (R
waves of an ECG) during inspiration and a scattering
during expiration are clearly seen. Although the
significance of RSA had not been fully investigated,
we demonstrated in an experimental animal study7

that the efficacy of pulmonary gas exchange was
improved by RSA. The concept that RSA is not
simply the secondary product of other known re-

flexes but that it has its own physiologic role is
gaining favor among pulmonary and cardiovascular
physiologists nowadays.8,9 In this review article, the
authors briefly address the physiologic role, mecha-
nisms, and clinical significance of RSA, while pre-
senting the recent research on this phenomenon.

Pulmonary Gas Exchange and RSA

In our earlier study,7 we postulated that “RSA has
a function to improve the pulmonary gas exchange,
synchronizing the heartbeat with respiratory
rhythm.” In the representative RSA in a dog, the
clustering of heartbeats during inspiration and their
scattering during expiration are observed (Fig 2).
With RSA, as the instantaneous blood volume circu-
lating in the pulmonary circulation depends on the
corresponding heart rate, the relationships between
alveolar gas and capillary blood undergoing pulmo-
nary gas exchange during inspiration and expiration
are as those shown in Figure 3. At any given
moment, approximately 10% of the blood in the
whole vasculature is distributed in the pulmonary
circulation, and 10% of the blood in the pulmonary
circulation is distributed in the pulmonary capillary
bed.10 Hence, the stroke volume is almost equivalent
to the bolus of blood momentarily circulating in the
pulmonary capillary bed. This indicates that most of
the pulmonary capillary blood volume interfacing
with the alveolar gas would be replaced with each

Figure 1. Respiratory and circulatory systems. The respiratory
system is open to the exterior of the human body through
ventilation in the alveoli, while the circulatory system consists of
two closed loops of pulmonary and systemic circulation. Pulmo-
nary circulation originates in the right ventricle and terminates in
the left atrium. Systemic circulation originates in the left ventricle
and terminates in the right atrium.

Figure 2. A polygraphic recording showing RSA in a conscious
dog. Recordings of electrocardiography, lung volume, and airway
O2 tension (arbitrary unit) were displayed. The conscious dog
lying quietly breathed via an endotracheal tube inserted through
a permanent tracheostomy. A clustering of heartbeats (R waves of
electrocardiography) during inspiration and a scattering during
expiration are clearly seen.

Figure 3. Scheme showing the conceptual effects of RSA (top)
and its inversion (bottom) on the relationship between alveolar
gas volume and capillary blood flow during inspiration (left) and
expiration (right). Curved horizontal arrows and vertical arrows
indicate the volume of blood flow circulating in the pulmonary
capillary bed and the direction of alveolar gas interfacing with the
pulmonary capillary blood. V/Q � ventilation/perfusion.
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heartbeat. Therefore, the distribution of heartbeats
within each respiratory cycle could critically affect
the efficacy of respiratory gas exchange.

In seven anesthetized dogs that had been pre-
pared with a bilateral cervical vagotomy, an RSA
simulation model was created after the elimination
of endogenous autonomic activities by means of a
reserpine injection.7 Respiration-linked heartbeat
fluctuations were generated by electrical stimulation
of the right cervical vagi, whereas negative pressure
ventilation was generated by the diaphragm pacing
technique (so-called electrophrenic respiration) to
mimic spontaneous breathing.11 During inspiration,
the phrenic nerve was electrically paced to generate
negative intrathoracic pressure, to preserve the phys-
iologic respiratory pump effects on venous return.
During expiration, the pressure in the thorax was
equal to the atmospheric pressure. Vagal stimulation
was performed under the following three conditions:
phasic stimulation during expiration (artificial RSA;
Fig 3, top); inspiration (inverse RSA; Fig 3, bottom);
and constant stimulation (control) causing the same
number of heartbeats per minute as artificial and
inverse RSA. We found that artificial RSA decreased
both of the ratios of physiologic dead space to tidal
volume and physiologic shunt to cardiac output by
10% and 51%, respectively, but increased O2 uptake
by 4% compared with the control. In contrast, we
also found that inverse RSA increased the ratios of
both physiologic dead space to tidal volume and
physiologic shunt to cardiac output by 14% and 64%,
respectively, and decreased O2 uptake by 14% com-
pared with the control. Under these three condi-
tions, the tidal volume, minute ventilation, heart
rate, cardiac output, and arterial BP were all un-
changed. Our results may well support the hypoth-
esis that RSA improves the pulmonary O2 uptake (ie,
the pulmonary gas exchange) by matching perfusion
to ventilation within each respiratory cycle, and,
hence, suppressing unnecessary heartbeats during
expiration and ineffective ventilation during the ebb
of perfusion.

Lorenzi-Filho et al12 found that the fluctuations in
ventilation during Cheyne-Stokes respiration could
amplify and entrain oscillations in heart rate in the
absence of hypoxia or arousal from sleep. Cheyne-
Stokes respiration is a form of periodic breathing
characterized by a cyclical fluctuation with periods of
central apneas alternating with episodes of hyper-
pnea in a gradual waxing-and-waning fashion. In this
particular pattern of periodic breathing, a scattering
of heartbeats occurs during the apneic phase,
whereas a clustering of heartbeats is observed during
the hyperpneic phase. Thus, the periodic oscillation
in the heart rate during Cheyne-Stokes respiration is

related to respiration and resembles an exaggerated
form of RSA, but at a lower frequency of periodic
breathing. The entrainment of heart rate oscillations
by Cheyne-Stokes respiration is a good example of
the synchronization of circulation with respiration
within each cycle length of respiratory periodicity.
From a clinical standpoint, the conditions of more
than half of congestive heart failure patients are
complicated by Cheyne-Stokes respiration.13,14 The
teleology of the frequent coexistence of periodic
breathing in congestive heart failure is likely to
improve the efficacy of pulmonary gas exchange by
entraining heartbeats with phasic hyperpnea within
each cycle length of Cheyne-Stokes respiration.
Hence, this phenomenon may function to save “un-
necessary” heartbeats during the apneic phase and
presumably to achieve the maximum efficacy of gas
exchange in a failing heart.

Chemoreflex and RSA

The response of RSA to hypoxia and hypercapnia
provides the physiologic compensation against the
turbulence/stressor challenged from outside the or-
ganism (Fig 1). RSA is easily influenced by such
factors as cardiopulmonary function, pattern of
breathing, sleep/wakefulness, anesthesia, body posi-
tion, age, gender, species, and many other variables.
In an RSA investigation, these variables must be
strictly controlled. Therefore, the authors used un-
anesthetized, conscious dogs for this purpose, since
the responses of RSA to chemostimulations have not
been systematically investigated.15,16 Moreover, RSA
has been well-investigated in canines,17,18 which
have a strong RSA.5,6

Each dog was trained to lie down on its side
quietly in the laboratory with a tube inserted through
a permanent tracheostomy so that respiratory/meta-
bolic parameters could be measured on a breath-by-
breath basis. BP was continuously monitored with a
surgically implanted telemetry unit in the femoral
artery. Electrocardiograms and electroencephalo-
grams also were monitored with subcutaneous nee-
dle electrodes. Using electroencephalograms and
behavioral criteria, the levels of sleep and wakeful-
ness were assessed, and only the data collected
during quiet wakefulness were included in this
study.19 A rebreathing technique was used for the
loading of hyperoxic hypercapnia and isocapnic hy-
poxia. The magnitude of RSA was assessed by a
complex demodulation to delineate the time-depen-
dent changes in oscillatory components in the R-R
interval on the ECG and in arterial BP.20,21
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Hypercapnia

The central chemoreceptors, respiratory center,
and effector organs serve to maintain Paco2 within a
range of 37 to 43 mm Hg in healthy humans.
Representative tracing during acute hyperoxic hy-
percapnia15 is shown in Figure 4, left. During pro-
gressive hypercapnia lasting approximately 3 min,
the partial pressure of end-tidal CO2 increased from
36 to 55 mm Hg, and, concomitantly, the tidal
volume and respiratory rate increased from 230 to
850 mL and from 18 to 22 breaths/min, respectively.
Both heart rate and BP were unchanged. It is notewor-
thy that RSA was augmented with hypercapnia.

Vagal stimulation generally decreases both heart
rate and cardiac contractility. In this study, while no
significant change was noted in heart rate, the
magnitude of RSA was intensified. Therefore, it is
likely that RSA was exaggerated without any tonic
increase in cardiac vagal outflow during central
chemostimulation with acute and progressive hyper-
capnia. This increase in RSA magnitude is thought to
result from the direct stimulation of central chemo-
receptors by the increased Pco2. Furthermore,

Sasano et al22 recently demonstrated that the in-
crease in RSA magnitude was observed even when
concomitant changes in respiratory rate and tidal
volume were eliminated. In the central chemoreflex,
as seen in baroreflex,23 a coupling of RSA and vagal
nerve activity disappears and, as a result, a dissocia-
tion between heart rate variability and vagal tone
occurs. These findings indicate that certain stimuli that
do not affect cardiac vagal tone could modify RSA
magnitude. Shykoff et al24 experimentally suggested
that RSA was regulated centrally and that its magnitude
was proportional to the respiratory drive. When hu-
mans are exposed to acute and progressive hypercap-
nia, expelling CO2 gas from the lungs is necessary for
survival, thus stimulating respiration. Moreover, the
pulmonary gas exchange should be accelerated, result-
ing in an intensified RSA, with which physiologic/
functional dead space is reduced by matching perfusion
and ventilation within each respiratory cycle.

Hypoxia

The bilateral carotid bodies located in the bifur-
cation of the internal and external carotid arteries

Figure 4. Representative tracings during hyperoxic hypercapnia (left) and isocapnic hypoxia (right) in
a conscious dog. RRI � R-R interval; MAP � mean BP; RRIHF � amplitude of R-R interval
oscillation in high-frequency band; VI � minute volume of inspiration; TV � tidal volume;
RR � respiratory frequency; Sao2 � saturation of arterial blood; and PetCO2 � partial pressure of
end-tidal CO2. Note that RSA (the magnitude of respiratory oscillation of RRI and its quantitative
reflection in RRIHF) increases with progressive hypercapnia (left), whereas it decreases with hypoxia
(right).
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serve primarily as the peripheral chemoreceptor.
They sense the arterial Po2, and that information is
transmitted to the respiratory center in the brain-
stem, which regulates depth and frequency of respi-
ration.

A representative tracing during acute isocapnic
hypoxia16 is shown in Figure 4, right. During pro-
gressive hypoxia lasting approximately 5 min, O2
saturation of arterial blood decreased from 95 to
73%, and tidal volume and respiratory rate concom-
itantly increased from 240 to 800 ml, and from 18 to
24 breaths/min, respectively, while both heart rate
and BP were augmented. It is noteworthy that the
RSA was attenuated with hypoxia.

These changes may provide compensatory re-
sponses against a threat of hypoxemia. When humans
are exposed to acute and progressive hypoxia, main-
taining oxygenation of the vital organs is necessary
for survival. To increase oxygen uptake and trans-
port, both ventilation and cardiac output need to
increase. When the relative expiration period short-
ens with an increasing respiratory rate, alveolar gas is
less likely to be saturated. Thus, cardiovascular syn-
chronization within each respiratory cycle would lose
its advantage. Moreover, because diastolic cardiac
filling is a major limiting factor of cardiac output
when the heart rate is elevated, fluctuations in the
heart period such as those with RSA would be
disadvantageous for increasing cardiac output. A
simultaneous surge in BP is convenient for redistri-
bution of the blood flow to the vital organs. The
sympathetic nervous system is mainly activated dur-
ing peripheral chemostimulation with hypoxia, which
is supported by data from previous investigations
revealing a prompt excretion of catecholamine in
anesthetized dogs25 and increased sympathetic nerve
activity of microneurographic technique in conscious
humans.26,27 Sympathetic excitation during hypoxia
is suggested by the concomitant increase in both
heart rate and BP, as shown in Figure 4, right.

Hypercapnia vs Hypoxia

The influences of hypoxia and hypercapnia28 on
the amplitude of RSA at a comparable level of
minute ventilation of 15 L/min were significantly
different. RSA was attenuated with hypoxia, whereas
it was augmented with hypercapnia. According to the
concept of permissive hypercapnia in patients with
respiratory distress who have been treated with
mechanical ventilation, a considerable level of hyper-
capnia (ie, 50 to 70 mm Hg) is permitted as long as
their oxygenation is maintained.29 Therefore, the
increase in Paco2 frequently seen in patients with
respiratory failure is less of a lethal threat than a
decrease in Pao2.30,31

Mechanisms of RSA

Heart rate is determined by the firing frequency of
the sinus node of a cardiac pacemaker. This fre-
quency is determined by the balance between the
cardiac sympathetic and vagal activities to the sinus
node. The activity of the cardiac vagal nerve is
assumed to be modulated by respiration, and hence
the sinus node activity is secondarily modulated by
the respiratory rhythm. Regarding the genesis of
RSA, both the respiratory and circulatory centers in
the brainstem appear to be responsible. Moreover,
projections from the cerebral cortex, limbic system,
and other parts of the brain to the brainstem should
exist.

In mammals, the following two major mechanisms
have been recognized for generating RSA: direct
modulation of the cardiac vagal preganglionic neu-
rons by central respiratory drive; and inhibition of
cardiac vagal efferent activity by lung inflation.24,32,33

The cardiac vagal efferent fibers are fired preferen-
tially during expiration, and this respiratory-related
activity is maintained even after the vagal nerve is
resected at the peripheral to the recording site.34,35

The vagal efferent fibers are more powerfully excited
during expiration by stimulating the arterial chemo-
receptors and baroreceptors.36,37 Respiratory modu-
lation could also be mediated by gating of the
excitatory reflex inputs into the preganglionic neu-
rons. Indeed, the membrane potential of cardiac
vagal preganglionic neurons has been demonstrated
to be hyperpolarized during each inspiration due to
the arrival of an acetylcholine-mediated inhibitory
postsynaptic potential, which makes neurons less
amenable to excitatory inputs during inspiration.38

On the other hand, afferent activity arising in the
lungs is also an important mechanism with which to
generate RSA. Lung inflation inhibits cardiac vagal
efferent activity and evokes tachycardia by stimulat-
ing the pulmonary C-fiber afferents (ie, pulmonary
stretch receptors). This effect may be so strong that
it reverses the bradycardia evoked by arterial che-
mostimulation into a tachycardia.39

The efferent cardiac vagal nerve plays the major
role in the genesis of RSA, whereas the contribution
of the cardiac sympathetic nerve seems to be mini-
mal. During inspiration, as described above, the
activity of the efferent cardiac vagal nerve is almost
abolished. Hence, the R-R interval on an ECG is
shortened. In contrast, during expiration, the activity
of the efferent cardiac vagal nerve reaches its maxi-
mum, thus extending the R-R interval. The differ-
ence in the R-R interval between inspiration and
expiration can be regarded as an indication of the
magnitude of RSA, which is assumed to reflect the
cardiac vagal outflow within its physiologic range.40,41
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Accordingly, the magnitude of RSA has been widely
used as a clinical measure of cardiac vagal activity.42 A
neural basis for RSA has been demonstrated by its
elimination or substantial attenuation following cervical
vagotomy,43 ganglionic blockade,44 cholinergic block-
ade,5 and heart transplantation.45

Clinical Significance of RSA

The magnitude of RSA is assessed as the ampli-
tude of the high-frequency component of the fluc-
tuation of the R-R interval (0.15 to 0.80 Hz), utilizing
the frequency analysis of heart rate variability on
electrocardiography. For an accurate assessment in
short-term electrocardiography recording, an exam-
inee’s tidal breathing should be standardized due to
the frequency-dependent characteristic of RSA.46,47

When a frequency analysis of heart rate variability is
performed with 24-h ambulatory electrocardiogra-
phy, the clinical use of RSA as a marker of autonomic
activity should be limited. In long-term recording
with ambulatory electrocardiography, the effects
of breathing on the magnitude of RSA must be
considered.

RSA is most prominent in infants and is attenuated
as humans age.48 This mechanism may be particu-
larly important during non-rapid eye movement
sleep, when high vagal activity and prominent RSA
may partially offset the detrimental effects of hy-
poventilation on gas exchange.49,50 Within an indi-
vidual age group, athletes have a stronger RSA than
do nonathletes,51 which also applies to adults who
exercise routinely compared to those who do not.52

In patients with malignant arrhythmia who survive
after cardiopulmonary resuscitation, RSA is very
much weakened.53 RSA is attenuated in patients with
coronary artery disease, even when they have no
history of acute myocardial infarction or congestive
heart failure.54 Moreover, their prognosis is propor-
tionally poor according to the attenuation in RSA,
and the number of affected coronary arteries in-
creases as the magnitude of RSA decreases.55 In
diabetic patients, a diminished RSA is the most
sensitive marker of autonomic neuropathy.56

Summarizing the above findings in the literature,
it seems rather clear that the capacity to generate
RSA is well-preserved in young and healthy individ-
uals, but is diminished in older individuals with
various diseases whose conditions are complicated by
cardiovascular diseases, diabetes mellitus, and the
like. In this context, RSA represents a “cardiac age”
or a “cardio-pulmonary reserve.”48 When deep and
slow breathing patterns are obtained through auto-
genic training, using techniques such as yoga and
tai-chi, RSA is secondarily augmented due to its

frequency-dependent characteristic.46 In most cases,
mental concentration and/or psychological relaxation
occur simultaneously.57,58 From the teleologic stand-
point, RSA avoids unnecessary heartbeats during
expiration, providing a physiologic respite for the
cardiopulmonary system. The mechanism of the
central origin of RSA, the interaction of the respira-
tory and circulatory centers, and the roles of the
cerebral cortex, reticular activating system, limbic
system, and other parts of the brain in generating
RSA are unknown. Hence, these issues must be the
focus of future studies.

Conclusions

Respiratory-circulatory interactions similar to RSA
are widely observed in birds, fish, and mammals.59 In
spontaneously breathing ducks, respiration-related
oscillations in heart rate, which is similar to RSA in
mammals, are observed.60 In resting fish, gills are
ventilated by a pulsatile water flow throughout the
respiratory cycle, and the heartbeat occurs in 1:1
synchrony with respiration, resulting in a coinci-
dence of the periods of maximum flow rate of blood
and water across the gills.61 These observations
indicate that RSA or heart rate variability in syn-
chrony with respiration is a biological phenomenon,
which may have a positive influence on gas exchange
at the level of the lung via efficient ventilation/
perfusion matching.
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